UK-China Agritech Challenge - Utilizing Earth Observation and UAV Technologies to Deliver Pest and Disease Products and Services to End Users in China
中英农业科技挑战赛——利用地球观测和无人机技术为中国最终用户提供病虫害产品和服务
基本信息
- 批准号:BB/S020977/1
- 负责人:
- 金额:$ 42.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(KCL) This project aims to develop time-series tools for pest and disease monitoring, forecasting and management in China, providing service products at national and local levels to enhance pest and disease control of wheat rust and locusts in particular. It will also develop advanced UAV-based tools that provide more efficient spraying of control measures (biopesticides) to provide alleviation of these problems without causing chemical pollution. In this context, the King's team will be developing ways to downscale satellite-based maps of land surface temperature to scales more akin to those of the fields within which the crops grow, in order to aid the development of mathematical models that can be used to forecast and monitor the efficacy of the bio-control measures and the spread of wheat rust. They will develop UAV-based methods to deliver maps of crop parameters from aerial imagery, which will be used to help both development of the downscaled satellite datasets and to provide an understanding of the crop structures that can be used to help in the development of the spraying technologies and planning tools that will be developed for the aerial platforms. Finally they will also develop methods to remotely sense locust surface temperatures from thermal imaging, in order to contribute to the development of better models of locust internal body temperature upon which the final mathematical models of bio-pesticide development rate depends.(Loughborough) Our proposal aims to develop a long term sustainable innovative partnership in agriculture technology between the UK and China through a comprehensive approach to deal with these two major agricultural pests/diseases. It will do so from a monitoring,forecasting and management perspective, combining cutting edge technology, modelling and biological information.The project is structured under six work packages that follow the cycle of a dynamic Agri-Tech service: observe to understand the nature of the problem and locate the pest/crop problem (WP1), orientate through development of forecast models to provide strategic risk awareness (WP2), decide providing useful information where to control pests at national and local levels (WP3), and act locally using precise application of bio pesticides via UAV deployments (WP4). The scopeof the project primarily falls into Agri-Tech Challenge 1 "Precision agriculture, agriculture digitisation and decision management tools" but also makes significant contributions to Challenge 2 "Improving the efficiency of sustainable agriculture". A key theme is to develop technologies for integrating data collected by UAVs, earth observation satellites,and bioscience applications related to disease/pest modelling. The project will develop autonomous and smart planning tools for agricultural remote sensing and plant protection, ultimately for the benefit of end users to reduce the cost and improve the effectiveness of their operations. One of the key outcomes is the development and application of novel technical systems for the monitoring and prediction of crop disease/pest outbreaks, As a novel technology, biopesticides treatment of orthoptera will be investigated and demonstrated, along with the modelling and prediction of yellow rust and orthoptera, real-time remote sensing methods will facilitate time specific and site specific treatment along with improved general farming management. Combining this with the work on biopesticides will significantly reduce the use of chemical pesticides and the risk of the development of crop's resistance to them, and will increase biodiversity due to lack of chemical pesticides. In addition to these benefits, the project will open up new business opportunities for both the UK, and Chinese industrial partners outside of China.
(KCL)该项目旨在开发用于害虫和疾病监测,中国预测和管理的时间序列工具,在国家和地方提供服务产品,以增强对小麦锈和蝗虫的害虫和疾病的控制。它还将开发基于无人机的高级工具,可提供更有效的控制措施(生物农药)的喷涂,以减轻这些问题而不会引起化学污染。在这种情况下,国王的团队将开发方法,以降低卫星的地表地图的地表地图,以缩放更类似于农作物种植的田野,以帮助开发数学模型,这些模型可用于预测和监测生物对照测量的效果和麦芽锈的传播。他们将开发基于无人机的方法来从空中图像中传递作物参数的地图,这些方法将用于帮助开发缩小的卫星数据集的开发,并提供对可用于开发用于航空平台的喷雾技术和规划工具的作物结构的理解。最后,他们还将开发方法,从热成像中从热成像中倾斜地表面温度,以促进更好的蝗虫内部温度模型的开发,其最终的生物农药发展速率的数学模型取决于。(Loughborough)我们的建议旨在通过在英国与中国之间的长期可持续性伙伴关系来开发与全面的国家之间的长期可持续伙伴关系,以实现两次全面的方式,这些方法是全面的。 It will do so from a monitoring,forecasting and management perspective, combining cutting edge technology, modelling and biological information.The project is structured under six work packages that follow the cycle of a dynamic Agri-Tech service: observe to understand the nature of the problem and locate the pest/crop problem (WP1), orientate through development of forecast models to provide strategic risk awareness (WP2), decide providing useful information where to control pests at national和本地级别(WP3),并通过无人机部署(WP4)精确地应用生物农药在本地采取行动。该项目的范围主要属于农业技术挑战1“精确农业,农业数字化和决策管理工具”,但也为挑战2“提高可持续农业效率”做出了重大贡献。一个关键主题是开发用于整合由无人机,地球观察卫星和与疾病/害虫建模有关的生物科学应用收集的数据的技术。该项目将开发自主和智能的规划工具,用于农业遥感和植物保护,最终为了使最终用户的利益降低成本并提高其运营的有效性。主要结果之一是,新型技术系统在监测和预测作物疾病/有害生物爆发中的开发和应用,作为一种新型技术,将研究和证明对正前翅目生物农药的处理,以及对黄色生锈和矫形器的建模和预测,实时遥感方法将有助于特定于时间的特定时间和特定于养殖场所,并有助于实时遥感。将其与生物农药的工作相结合,将大大减少化学农药的使用以及产生农作物对它们的耐药性的风险,并且由于缺乏化学农药而增加了生物多样性。除这些好处外,该项目还将为英国和中国以外的中国工业伙伴开放新的商机。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution
- DOI:10.1016/j.compag.2020.105282
- 发表时间:2020-03-01
- 期刊:
- 影响因子:8.3
- 作者:Meng, Yanhua;Su, Jinya;Lan, Yubin
- 通讯作者:Lan, Yubin
The influence of rotor downwash on spray distribution under a quadrotor unmanned aerial system
- DOI:10.1016/j.compag.2022.106807
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:M. Coombes;Sam Newton;James Knowles;A. Garmory
- 通讯作者:M. Coombes;Sam Newton;James Knowles;A. Garmory
Spraying Coverage Path Planning for Agriculture Unmanned Aerial Vehicles
农业无人机喷洒覆盖路径规划
- DOI:10.23919/icac50006.2021.9594271
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Guo Y
- 通讯作者:Guo Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Wooster其他文献
Martin Wooster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Wooster', 18)}}的其他基金
NERC Earth Observation Data Analysis and Artificial-Intelligence Service (NEODAAS)
NERC 地球观测数据分析和人工智能服务 (NEODAAS)
- 批准号:
NE/Y005406/1 - 财政年份:2024
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
NERC Field Spectroscopy Facility (FSF)
NERC 现场光谱设施 (FSF)
- 批准号:
NE/Y005392/1 - 财政年份:2024
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
Development and application of Earth Observation to support reductions in methane emission from agriculture (EOforCH4)
地球观测的开发和应用以支持减少农业甲烷排放(EOforCH4)
- 批准号:
ST/Y000420/1 - 财政年份:2023
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
EO4AgroClimate: How agri-tech and space-based solutions can support climate smart agriculture in Australia
EO4AgroClimate:农业技术和天基解决方案如何支持澳大利亚的气候智能农业
- 批准号:
ST/W007088/1 - 财政年份:2021
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
Pollution and Climate Smart Agriculture in China (PaCSAC)
中国污染与气候智能型农业 (PaCSAC)
- 批准号:
ST/V002651/1 - 财政年份:2020
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS)
NERC 地球观测数据采集和分析服务 (NEODAAS)
- 批准号:
NE/S013377/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
GeoStationary Fire data for Developing Countries
发展中国家的地球静止火灾数据
- 批准号:
NE/S014004/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
Field Spectroscopy Facility (FSF)
现场光谱设备 (FSF)
- 批准号:
NE/S013385/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
New satellite observations to improve monitoring and forecasting of severe smoke pollution over SE Asia caused by Indonesian landscape burning
新的卫星观测可改善对印度尼西亚景观燃烧造成的东南亚严重烟雾污染的监测和预报
- 批准号:
ST/S003029/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
KEY IN SITU MEASURES OF EL NINO EXACERBATED FIRES IN INDONESIA
针对厄尔尼诺现象加剧印度尼西亚火灾的关键现场措施
- 批准号:
NE/N01555X/1 - 财政年份:2016
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
相似国自然基金
气候变化诱导农业技术变革的机制及适应性对策:以中国玉米主产区为例
- 批准号:71904190
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
转基因技术、农业机械化与中国棉花生产安全
- 批准号:71773150
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于农户为评价主体的中国农业技术推广激励机制研究:以水稻为例
- 批准号:70973142
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
加入WTO后中国农业技术知识产权管理机制与策略研究
- 批准号:70273053
- 批准年份:2002
- 资助金额:15.0 万元
- 项目类别:面上项目
中国农业技术及生产效率的动态监测体系研究
- 批准号:70173026
- 批准年份:2001
- 资助金额:12.0 万元
- 项目类别:面上项目
相似海外基金
UK-China Agritech Challenge- CITRUSAFE
中英农业科技挑战赛- CITRUSAFE
- 批准号:
BB/S020950/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge Zero-Waste Agricultural Mulch Films for Crops in China (ZEWAMFI)
中英农业科技挑战赛中国农作物零废弃农用地膜 (ZEWAMFI)
- 批准号:
BB/S020861/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge: CropDoc - Precision Crop Disease Management for Farm Productivity and Food Security
中英农业科技挑战赛:CropDoc - 精准作物病害管理,提高农业生产力和粮食安全
- 批准号:
BB/S020969/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge: Aquaculture 4.0 -- Advancing Digital Precision Aquaculture in China (ADPAC)
中英农业科技挑战赛:水产养殖 4.0——推进中国数字化精准水产养殖 (ADPAC)
- 批准号:
BB/S020896/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge: Envirobot An autonomous roving platform for environment, health and welfare monitoring of poultry
中英农业科技挑战赛:Envirobot 用于家禽环境、健康和福利监测的自主流动平台
- 批准号:
BB/S020829/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant