Auxin in transcription factor complex controls polarity in plant organogenesis

转录因子复合物中的生长素控制植物器官发生中的极性

基本信息

  • 批准号:
    BB/M004112/1
  • 负责人:
  • 金额:
    $ 68.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Multicellular organisms including plants and animals develop specialised organs, which are composed of different types of tissues. The structure - or pattern - of organs is determined by the polarity within tissues along axes of symmetry. In order to coordinate polarity across a tissue or organ, multicellular organisms use mobile substances such as hormones. The plant hormone auxin was one of the first hormones ever to be studied and the effect of auxin on light-regulated plant growth (phototropism) was investigated by Charles Darwin and his son Francis in the 1880s. It was, however, not until the 1930s that the auxin molecule was isolated and its molecular structure determined as indole 3-acetic acid (IAA). In plants, auxin plays an essential role in initiating organ formation and in patterning the organs in specific tissue types, including for example lateral roots, young leaves and those of the female reproductive organ, the gynoecium. Control of auxin dynamics is achieved at the levels of biosynthesis, transport and signalling. The auxin molecule was previously shown to mediate the interactions between specific proteins thereby causing the degradation of repressors of gene expression. It has also been established that auxin can influence its own transport via inhibiting internalisation of PIN auxin transporters. Although these mechanisms of auxin signalling can explain many processes of auxin action, other transcriptional signalling pathways are likely to exist to account for the plethora of processes in which auxin plays a role. We have identified an interaction between two proteins found in the model plant Arabidopsis, which both are key regulators of polarity in the gynoecium of the flower. They have been named ETTIN and IND and both act as transcription factors (i.e. directly control the expression of genes). From experiments carried out in yeast we know that together these proteins can physically bind auxin in a so-called receptor complex, and our preliminary data suggest that the target gene set of ETT and IND changes when they bind auxin. This suggests the existence of an alternative signalling pathway for auxin. ETTIN controls the initiation and patterning of other plant organs, and in accordance with this, we identified other transcription factors that ETT can interact with in a similar auxin-sensitive manner. It is therefore likely that this new pathway is conserved in plant development. Through experiments described in this proposal, we aim to reach a mechanistic and developmental understanding of this newly discovered auxin-signalling module, which may be particularly well suited to facilitate precise switches in polarity throughout plant development.
包括植物和动物在内的多细胞生物会形成由不同类型的组织组成的专业器官。器官的结构或模式取决于沿对称轴的组织内的极性。为了协调组织或器官的极性,多细胞生物使用可移动物质,例如激素。植物激素生长素是有史以来第一个要研究的激素之一,生长素对1880年代的查尔斯·达尔文(Charles Darwin)和他的儿子弗朗西斯(Francis)研究了生长素对光调节植物生长(光质主义)的影响。但是,直到1930年代,生长素分子才被分离出来,其分子结构确定为吲哚3-乙酸(IAA)。在植物中,生长素在启动器官形成和对特定组织类型的器官进行模式(包括横向根,幼叶和雌性生殖器官,妇科雌性)中起着至关重要的作用。生长素动力学的控制是在生物合成,传输和信号传导水平上实现的。先前显示生长素分子可以介导特定蛋白质之间的相互作用,从而导致基因表达的阻遏物降解。还已经确定生长素可以通过抑制销生长蛋白转运蛋白的内部化来影响其自身的运输。尽管这些生长素信号传导的这些机制可以解释生长素作用的许多过程,但其他转录信号通路可能存在,以解释生长素发挥作用的大量过程。我们已经确定了模型植物拟南芥中发现的两种蛋白质之间的相互作用,这两者都是花朵雌性雌性的关键调节剂。它们被命名为ettin和ind,并且两者都充当转录因子(即直接控制基因的表达)。从酵母中进行的实验中,我们知道这些蛋白质可以在所谓的受体复合物中物理结合生长素,并且我们的初步数据表明,ETT的靶基因集和IND结合生长素时会发生变化。这表明存在生长素的替代信号通路。 Ettin控制其他植物器官的启动和模式,根据此,我们确定了ETT可以以类似的生长素敏感方式相互作用的其他转录因子。因此,这种新途径可能在植物发育中保存。通过本提案中描述的实验,我们旨在对这个新发现的生长素签名模块产生机械和发展的理解,这可能特别适合促进整个工厂发育过程中极性的精确切换。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy.
  • DOI:
    10.1242/dev.135327
  • 发表时间:
    2016-09-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eldridge T;Łangowski Ł;Stacey N;Jantzen F;Moubayidin L;Sicard A;Southam P;Kennaway R;Lenhard M;Coen ES;Østergaard L
  • 通讯作者:
    Østergaard L
Coordination of biradial-to-radial symmetry and tissue polarity by HD-ZIP II proteins.
  • DOI:
    10.1038/s41467-021-24550-6
  • 发表时间:
    2021-07-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Carabelli M;Turchi L;Morelli G;Østergaard L;Ruberti I;Moubayidin L
  • 通讯作者:
    Moubayidin L
Chromatin Immunoprecipitation (ChIP) to Assess Histone Marks in Auxin-treated Arabidopsis thaliana Inflorescence Tissue.
染色质免疫沉淀 (ChIP) 评估生长素处理的拟南芥花序组织中的组蛋白标记。
  • DOI:
    10.21769/bioprotoc.3832
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Kuhn A
  • 通讯作者:
    Kuhn A
Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS
生长素反应因子通过染色质介导的多能性基因 SHOOTMERISTEMLESS 抑制促进器官发生
  • DOI:
    10.5167/uzh-234206
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chung, Yuhee
  • 通讯作者:
    Chung, Yuhee
Gynoecium formation: an intimate and complicated relationship.
  • DOI:
    10.1016/j.gde.2017.02.005
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Laila Moubayidin;L. Østergaard
  • 通讯作者:
    Laila Moubayidin;L. Østergaard
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lars Ostergaard其他文献

Annual Plant Reviews Volume 38 Fruit Development and Seed Dispersal
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lars Ostergaard
  • 通讯作者:
    Lars Ostergaard

Lars Ostergaard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lars Ostergaard', 18)}}的其他基金

Dynamics and evolution of a halogenated auxin - a seed-derived signal for pea pod growth
卤化生长素的动力学和进化——豌豆荚生长的种子来源信号
  • 批准号:
    BB/Y004701/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
EAGLE: Enhanced Analytical and Genetics Tools for Improving UK Food Legumes
EAGLE:增强的分析和遗传学工具,用于改善英国食品豆类
  • 批准号:
    BB/W01923X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
EAGLE: Enhanced Analytical and Genetics Tools for Improving UK Food Legumes
EAGLE:增强的分析和遗传学工具,用于改善英国食品豆类
  • 批准号:
    BB/W01923X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
Auxentric - a hormone-based mechanism to control chromatin state
Auxentric - 一种基于激素的控制染色质状态的机制
  • 批准号:
    BB/S002901/1
  • 财政年份:
    2019
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
The ABC of fruit-shape formation in the Brassicaceae
十字花科植物果实形状形成的ABC
  • 批准号:
    BB/P020747/1
  • 财政年份:
    2017
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
Brassica Rapeseed And Vegetable Optimisation
甘蓝型油菜籽和蔬菜优化
  • 批准号:
    BB/P003095/1
  • 财政年份:
    2017
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
FACCE ERA-NET+: Securing yield stability of Brassica crops in changing climate conditions
FACCE ERA-NET:在不断变化的气候条件下确保芸苔属作物的产量稳定性
  • 批准号:
    BB/M018164/1
  • 财政年份:
    2014
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
Genetic and hormonal feedbacks defining tissue polarity by broad brushes and fine PINs
遗传和激素反馈通过粗刷和精细 PIN 定义组织极性
  • 批准号:
    BB/K008617/1
  • 财政年份:
    2013
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
Pod shatter resistance in oilseed rape through reduced gibberellin synthesis
通过减少赤霉素合成来提高油菜的荚果破碎抗性
  • 批准号:
    BB/J533055/1
  • 财政年份:
    2012
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant
Exploring knowledge of gene function to combat pod shatter in oilseed rape
探索防止油菜破荚的基因功能知识
  • 批准号:
    BB/I017232/1
  • 财政年份:
    2011
  • 资助金额:
    $ 68.36万
  • 项目类别:
    Research Grant

相似国自然基金

缺氧诱导因子(HIF)-2α转录抑制树突状细胞CD36表达减轻肾脏缺血再灌注损伤的机制
  • 批准号:
    82370751
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转录因子BCL6抑制ICOSL表达优化生发中心反应的机制研究
  • 批准号:
    82371745
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
锌指蛋白ZBTB17调控成纤维细胞衰老的机制研究
  • 批准号:
    32000509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
细胞衰老抑制直接重编程及心肌再生修复的分子机理研究
  • 批准号:
    92068107
  • 批准年份:
    2020
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Using auxin to understand context-dependent hormone response
使用生长素了解背景依赖性激素反应
  • 批准号:
    10605909
  • 财政年份:
    2023
  • 资助金额:
    $ 68.36万
  • 项目类别:
Novel auxin signaling components and pathways.
新型生长素信号传导成分和途径。
  • 批准号:
    10398201
  • 财政年份:
    2021
  • 资助金额:
    $ 68.36万
  • 项目类别:
Novel auxin signaling components and pathways.
新型生长素信号传导成分和途径。
  • 批准号:
    10206841
  • 财政年份:
    2021
  • 资助金额:
    $ 68.36万
  • 项目类别:
Novel auxin signaling components and pathways.
新型生长素信号传导成分和途径。
  • 批准号:
    10614965
  • 财政年份:
    2021
  • 资助金额:
    $ 68.36万
  • 项目类别:
Auxin Response Factors as a model of transcriptional control
生长素反应因子作为转录控制模型
  • 批准号:
    10188569
  • 财政年份:
    2020
  • 资助金额:
    $ 68.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了