Genetic and hormonal feedbacks defining tissue polarity by broad brushes and fine PINs
遗传和激素反馈通过粗刷和精细 PIN 定义组织极性
基本信息
- 批准号:BB/K008617/1
- 负责人:
- 金额:$ 60.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multicellular organisms such as animals and plants develop specialised organs, which are composed of different types of tissues. The structure - or pattern - of organs is determined by the polarity within tissues such as for example radial or medio-lateral symmetry. Polarity is established when cells are provided with a sense of direction. Although developmental biologists have successfully identified genes required to specify individual cell types of an organ, and even how they interact in genetic networks, we know very little about the mechanisms that regulate tissue polarity. Flowering plants evolved about 140 million years ago and today comprise more than 90% of plants of the plant kingdom. The main reason for their enormous success is the development of fruits as the reproductive organ containing the developing seeds. After fertilisation, the fruit nurtures, protects and mediates the efficient dispersal of seeds to ensure success of future generations. Fruits occur in a range of shapes and sizes, but common to all fruits is that they develop from structures called carpels in the centre of the flower that fuse to form a gynoecium. Interestingly, the German poet and scientist Johann Wolfgang von Goethe hypothesised more than 200 years ago that all floral organs are in fact modified leaves. Modern genetics and molecular biology has confirmed Goethe's prediction, and revealed that also carpels are evolutionarily derived from leaves. The gynoecium is therefore formed from a simpler basic plan and modified over time to optimise its function as a reproductive organ. These modifications have for example allowed development of ovules in the ovary at the centre of the gynoecium that will be fertilised to develop seeds. They were also responsible for producing a structure at the tip of the gynoecium called stigma to facilitate pollination, and modifications furthermore resulted in the formation of a style just below the stigma to support the development of pollen tubes, which will guide the pollen to the ovules for efficient fertilisation. Whereas the ovary has medio-lateral symmetry reflecting the origin as two fused leaves, the style and stigma adopts radial symmetry. The modifications involved in creating the gynoecium from two leaves, therefore involved changing the polarity of tissues. Mobile signals such as hormones are likely to coordinate growth of the different domains and structures in the gynoecium. Our recent work suggests that the plant hormone auxin has such a prominent role. In this proposal we will build on these preliminary data and take advantage of newly developed genetic and molecular resources, mathematical modelling as well DNA-deep-sequencing technology to:1) understand how interaction between a known set of transcription factors and auxin activity regulate polarity of specific tissues.2) identify pathways and key components regulated by the auxin/transcription factor module.3) study how the auxin distribution pattern is established. Through these studies we aim to provide a unified understanding of tissue polarity establishment during gynoecium development and to reveal the key importance of auxin in allowing the transition from vegetative leaves to a complex reproductive organ.
动物和植物等多细胞生物发育出由不同类型的组织组成的专门器官。器官的结构或模式由组织内的极性决定,例如径向对称或内外对称。当细胞具有方向感时,极性就建立了。尽管发育生物学家已经成功地识别了指定器官的单个细胞类型所需的基因,甚至它们如何在遗传网络中相互作用,但我们对调节组织极性的机制知之甚少。开花植物大约在 1.4 亿年前进化而来,如今占植物界 90% 以上的植物。它们取得巨大成功的主要原因是果实的发育,作为含有正在发育的种子的生殖器官。受精后,果实会滋养、保护和调节种子的有效传播,以确保后代的成功。果实有各种形状和大小,但所有果实的共同点是它们都是从花中心的心皮结构发育而来,这些结构融合形成雌蕊。有趣的是,德国诗人兼科学家约翰·沃尔夫冈·冯·歌德在 200 多年前就假设所有花器官实际上都是经过改造的叶子。现代遗传学和分子生物学证实了歌德的预测,并揭示了心皮也是从叶子进化而来的。因此,雌蕊是由一个更简单的基本计划形成的,并随着时间的推移进行修改,以优化其作为生殖器官的功能。例如,这些修饰允许在雌蕊中心的子房中发育出胚珠,这些胚珠将受精以发育种子。它们还负责在雌蕊顶端产生一种称为柱头的结构,以促进授粉,并且进一步的修饰导致在柱头下方形成一种花柱,以支持花粉管的发育,从而将花粉引导至胚珠以实现高效施肥。虽然子房具有左右对称性,反映出其起源为两片融合的叶子,但花柱和柱头采用径向对称。因此,涉及从两片叶子创建雌蕊的修改涉及改变组织的极性。激素等移动信号可能会协调雌蕊中不同区域和结构的生长。我们最近的工作表明植物激素生长素具有如此重要的作用。在本提案中,我们将在这些初步数据的基础上,利用新开发的遗传和分子资源、数学模型以及 DNA 深度测序技术来:1) 了解一组已知转录因子和生长素活性之间的相互作用如何调节极性2)确定生长素/转录因子模块调节的途径和关键成分。3)研究生长素分布模式是如何建立的。通过这些研究,我们的目标是对雌蕊发育过程中组织极性的建立提供统一的理解,并揭示生长素在从营养叶向复杂生殖器官转变中的关键重要性。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy.
- DOI:10.1242/dev.135327
- 发表时间:2016-09-15
- 期刊:
- 影响因子:0
- 作者:Eldridge T;Łangowski Ł;Stacey N;Jantzen F;Moubayidin L;Sicard A;Southam P;Kennaway R;Lenhard M;Coen ES;Østergaard L
- 通讯作者:Østergaard L
Gynoecium formation: an intimate and complicated relationship.
- DOI:10.1016/j.gde.2017.02.005
- 发表时间:2017-08
- 期刊:
- 影响因子:4
- 作者:Laila Moubayidin;L. Østergaard
- 通讯作者:Laila Moubayidin;L. Østergaard
Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development.
- DOI:10.1016/j.cub.2014.09.080
- 发表时间:2014-11-17
- 期刊:
- 影响因子:9.2
- 作者:Moubayidin, Laila;Ostergaard, Lars
- 通讯作者:Ostergaard, Lars
Systems Biology Approach Pinpoints Minimum Requirements for Auxin Distribution during Fruit Opening.
系统生物学方法确定了果实开放期间生长素分布的最低要求。
- DOI:10.1016/j.molp.2019.05.003
- 发表时间:2019
- 期刊:
- 影响因子:27.5
- 作者:Li XR
- 通讯作者:Li XR
A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis.
- DOI:10.1101/gad.285361.116
- 发表时间:2016-10-15
- 期刊:
- 影响因子:10.5
- 作者:Simonini S;Deb J;Moubayidin L;Stephenson P;Valluru M;Freire-Rios A;Sorefan K;Weijers D;Friml J;Østergaard L
- 通讯作者:Østergaard L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars Ostergaard其他文献
Annual Plant Reviews Volume 38 Fruit Development and Seed Dispersal
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Lars Ostergaard - 通讯作者:
Lars Ostergaard
Lars Ostergaard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars Ostergaard', 18)}}的其他基金
Dynamics and evolution of a halogenated auxin - a seed-derived signal for pea pod growth
卤化生长素的动力学和进化——豌豆荚生长的种子来源信号
- 批准号:
BB/Y004701/1 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
EAGLE: Enhanced Analytical and Genetics Tools for Improving UK Food Legumes
EAGLE:增强的分析和遗传学工具,用于改善英国食品豆类
- 批准号:
BB/W01923X/2 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
EAGLE: Enhanced Analytical and Genetics Tools for Improving UK Food Legumes
EAGLE:增强的分析和遗传学工具,用于改善英国食品豆类
- 批准号:
BB/W01923X/1 - 财政年份:2022
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
Auxentric - a hormone-based mechanism to control chromatin state
Auxentric - 一种基于激素的控制染色质状态的机制
- 批准号:
BB/S002901/1 - 财政年份:2019
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
The ABC of fruit-shape formation in the Brassicaceae
十字花科植物果实形状形成的ABC
- 批准号:
BB/P020747/1 - 财政年份:2017
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
Brassica Rapeseed And Vegetable Optimisation
甘蓝型油菜籽和蔬菜优化
- 批准号:
BB/P003095/1 - 财政年份:2017
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
Auxin in transcription factor complex controls polarity in plant organogenesis
转录因子复合物中的生长素控制植物器官发生中的极性
- 批准号:
BB/M004112/1 - 财政年份:2015
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
FACCE ERA-NET+: Securing yield stability of Brassica crops in changing climate conditions
FACCE ERA-NET:在不断变化的气候条件下确保芸苔属作物的产量稳定性
- 批准号:
BB/M018164/1 - 财政年份:2014
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
Pod shatter resistance in oilseed rape through reduced gibberellin synthesis
通过减少赤霉素合成来提高油菜的荚果破碎抗性
- 批准号:
BB/J533055/1 - 财政年份:2012
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
Exploring knowledge of gene function to combat pod shatter in oilseed rape
探索防止油菜破荚的基因功能知识
- 批准号:
BB/I017232/1 - 财政年份:2011
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
相似国自然基金
Pristionchus线虫的荷尔蒙信息素研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双酚A及替代物对雄性幼鼠外生殖系统发育的影响机制与毒性比较
- 批准号:21777059
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
甲状腺荷尔蒙抗炎效果及机制研究
- 批准号:81571609
- 批准年份:2015
- 资助金额:51.0 万元
- 项目类别:面上项目
乙烯荷尔蒙诱导的与叶器官的细胞分裂分化相关的翻译后修饰(PTM)网络
- 批准号:31570187
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
新荷尔蒙受体Gpr54在骨质重建中的机理研究
- 批准号:81071437
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Hormonal control of stamen filament growth
合作研究:雄蕊丝生长的激素控制
- 批准号:
2343701 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Standard Grant
Collaborative Research: Hormonal control of stamen filament growth
合作研究:雄蕊丝生长的激素控制
- 批准号:
2343702 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Standard Grant
Shared and distinct genetic architecture of autoimmune and hormonal alopecias
自身免疫性脱发和激素性脱发的共同和独特的遗传结构
- 批准号:
MR/X030466/1 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
Bilirubin Catabolism induces Plasminogen-Activator Inhibitor 1 (PAI-1) worsening Metabolic Dysfunction
胆红素分解代谢诱导纤溶酶原激活剂抑制剂 1 (PAI-1) 恶化代谢功能障碍
- 批准号:
10750132 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Enhancing cognition through the menopausal transition in at-risk 'APOE4' carriers by fatty acid and hormonal modulation.
通过脂肪酸和激素调节,通过高危“APOE4”携带者的绝经过渡增强认知能力。
- 批准号:
BB/X002209/1 - 财政年份:2023
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant