Genetic and hormonal feedbacks defining tissue polarity by broad brushes and fine PINs

遗传和激素反馈通过粗刷和精细 PIN 定义组织极性

基本信息

  • 批准号:
    BB/K008617/1
  • 负责人:
  • 金额:
    $ 60.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Multicellular organisms such as animals and plants develop specialised organs, which are composed of different types of tissues. The structure - or pattern - of organs is determined by the polarity within tissues such as for example radial or medio-lateral symmetry. Polarity is established when cells are provided with a sense of direction. Although developmental biologists have successfully identified genes required to specify individual cell types of an organ, and even how they interact in genetic networks, we know very little about the mechanisms that regulate tissue polarity. Flowering plants evolved about 140 million years ago and today comprise more than 90% of plants of the plant kingdom. The main reason for their enormous success is the development of fruits as the reproductive organ containing the developing seeds. After fertilisation, the fruit nurtures, protects and mediates the efficient dispersal of seeds to ensure success of future generations. Fruits occur in a range of shapes and sizes, but common to all fruits is that they develop from structures called carpels in the centre of the flower that fuse to form a gynoecium. Interestingly, the German poet and scientist Johann Wolfgang von Goethe hypothesised more than 200 years ago that all floral organs are in fact modified leaves. Modern genetics and molecular biology has confirmed Goethe's prediction, and revealed that also carpels are evolutionarily derived from leaves. The gynoecium is therefore formed from a simpler basic plan and modified over time to optimise its function as a reproductive organ. These modifications have for example allowed development of ovules in the ovary at the centre of the gynoecium that will be fertilised to develop seeds. They were also responsible for producing a structure at the tip of the gynoecium called stigma to facilitate pollination, and modifications furthermore resulted in the formation of a style just below the stigma to support the development of pollen tubes, which will guide the pollen to the ovules for efficient fertilisation. Whereas the ovary has medio-lateral symmetry reflecting the origin as two fused leaves, the style and stigma adopts radial symmetry. The modifications involved in creating the gynoecium from two leaves, therefore involved changing the polarity of tissues. Mobile signals such as hormones are likely to coordinate growth of the different domains and structures in the gynoecium. Our recent work suggests that the plant hormone auxin has such a prominent role. In this proposal we will build on these preliminary data and take advantage of newly developed genetic and molecular resources, mathematical modelling as well DNA-deep-sequencing technology to:1) understand how interaction between a known set of transcription factors and auxin activity regulate polarity of specific tissues.2) identify pathways and key components regulated by the auxin/transcription factor module.3) study how the auxin distribution pattern is established. Through these studies we aim to provide a unified understanding of tissue polarity establishment during gynoecium development and to reveal the key importance of auxin in allowing the transition from vegetative leaves to a complex reproductive organ.
多细胞生物(例如动物和植物)会形成专门的器官,这些器官由不同类型的组织组成。器官的结构或模式取决于组织内的极性(例如径向或中侧侧对称性)。当向细胞带来方向感时,建立极性。尽管发育生物学家已经成功地识别了指定器官单个细胞类型所需的基因,甚至它们在遗传网络中的相互作用方式,但我们对调节组织极性的机制知之甚少。开花植物大约在1.4亿年前进化,今天占该植物王国的90%以上。他们取得巨大成功的主要原因是将水果作为含有发育中种子的生殖器官的发展。受精后,果实养育,保护和调解种子的有效分散,以确保子孙后代的成功。果实出现在各种形状和大小的范围内,但所有水果共有的是它们是从融合的花朵中心的结构中形成的结构,这些结构融合形成了妇科。有趣的是,德国诗人兼科学家约翰·沃尔夫冈·冯·歌德(Johann Wolfgang von Goethe)假设200多年前,所有花卉器官实际上都是修改的叶子。现代遗传学和分子生物学已经证实了歌德的预测,并揭示了皮卡是从叶子中得出的。因此,妇科由更简单的基本计划形成,并随着时间的推移而修改,以优化其作为生殖器官的功能。例如,这些修饰可以使妇科元中心的卵巢中胚房发展,该胚房将被施肥以形成种子。他们还负责在称为污名的妇科峰的尖端产生一种结构,以促进授粉,然后修改导致形成在污名下方的样式,以支持花粉管的发展,这将引导花粉到卵形上,以获得有效的施肥。卵巢具有中缘对称性,反映了两个融合的叶子,而样式和污名采用了径向对称性。从两个叶子中产生妇科的修改涉及的修改涉及改变组织的极性。诸如激素之类的移动信号可能会协调妇科中不同域和结构的增长。我们最近的工作表明,植物激素生长素具有如此重要的作用。在该提案中,我们将基于这些初步数据,并利用新开发的遗传和分子资源,数学模型,DNA深度序列的序列技术对:1)了解:1)了解一组已知转录因子和生长素活性之间的相互作用如何调节特定组织的极性。2)识别途径和由Auxin istription iS STRAPTION IS模块化模型的识别途径。通过这些研究,我们旨在提供对妇科发育过程中组织极性建立的统一理解,并揭示生长素在允许从营养叶到复杂的生殖器官过渡方面的关键重要性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy.
  • DOI:
    10.1242/dev.135327
  • 发表时间:
    2016-09-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eldridge T;Łangowski Ł;Stacey N;Jantzen F;Moubayidin L;Sicard A;Southam P;Kennaway R;Lenhard M;Coen ES;Østergaard L
  • 通讯作者:
    Østergaard L
Gynoecium formation: an intimate and complicated relationship.
  • DOI:
    10.1016/j.gde.2017.02.005
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Laila Moubayidin;L. Østergaard
  • 通讯作者:
    Laila Moubayidin;L. Østergaard
Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development.
  • DOI:
    10.1016/j.cub.2014.09.080
  • 发表时间:
    2014-11-17
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Moubayidin, Laila;Ostergaard, Lars
  • 通讯作者:
    Ostergaard, Lars
Systems Biology Approach Pinpoints Minimum Requirements for Auxin Distribution during Fruit Opening.
系统生物学方法确定了果实开放期间生长素分布的最低要求。
  • DOI:
    10.1016/j.molp.2019.05.003
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Li XR
  • 通讯作者:
    Li XR
A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis.
  • DOI:
    10.1101/gad.285361.116
  • 发表时间:
    2016-10-15
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Simonini S;Deb J;Moubayidin L;Stephenson P;Valluru M;Freire-Rios A;Sorefan K;Weijers D;Friml J;Østergaard L
  • 通讯作者:
    Østergaard L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lars Ostergaard其他文献

Annual Plant Reviews Volume 38 Fruit Development and Seed Dispersal
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lars Ostergaard
  • 通讯作者:
    Lars Ostergaard

Lars Ostergaard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lars Ostergaard', 18)}}的其他基金

Dynamics and evolution of a halogenated auxin - a seed-derived signal for pea pod growth
卤化生长素的动力学和进化——豌豆荚生长的种子来源信号
  • 批准号:
    BB/Y004701/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
EAGLE: Enhanced Analytical and Genetics Tools for Improving UK Food Legumes
EAGLE:增强的分析和遗传学工具,用于改善英国食品豆类
  • 批准号:
    BB/W01923X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
EAGLE: Enhanced Analytical and Genetics Tools for Improving UK Food Legumes
EAGLE:增强的分析和遗传学工具,用于改善英国食品豆类
  • 批准号:
    BB/W01923X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
Auxentric - a hormone-based mechanism to control chromatin state
Auxentric - 一种基于激素的控制染色质状态的机制
  • 批准号:
    BB/S002901/1
  • 财政年份:
    2019
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
The ABC of fruit-shape formation in the Brassicaceae
十字花科植物果实形状形成的ABC
  • 批准号:
    BB/P020747/1
  • 财政年份:
    2017
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
Brassica Rapeseed And Vegetable Optimisation
甘蓝型油菜籽和蔬菜优化
  • 批准号:
    BB/P003095/1
  • 财政年份:
    2017
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
Auxin in transcription factor complex controls polarity in plant organogenesis
转录因子复合物中的生长素控制植物器官发生中的极性
  • 批准号:
    BB/M004112/1
  • 财政年份:
    2015
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
FACCE ERA-NET+: Securing yield stability of Brassica crops in changing climate conditions
FACCE ERA-NET:在不断变化的气候条件下确保芸苔属作物的产量稳定性
  • 批准号:
    BB/M018164/1
  • 财政年份:
    2014
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
Pod shatter resistance in oilseed rape through reduced gibberellin synthesis
通过减少赤霉素合成来提高油菜的荚果破碎抗性
  • 批准号:
    BB/J533055/1
  • 财政年份:
    2012
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
Exploring knowledge of gene function to combat pod shatter in oilseed rape
探索防止油菜破荚的基因功能知识
  • 批准号:
    BB/I017232/1
  • 财政年份:
    2011
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant

相似国自然基金

三七皂苷通过促进"巨噬细胞M2型极化-PPARγ"正反馈调节改善激素耐药狼疮肾炎动脉粥样硬化的作用机制研究
  • 批准号:
    82104593
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
性类固醇激素对克氏双锯鱼非功能雄性个体kiss基因反馈调控的分子机制研究
  • 批准号:
    32102770
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Neddylation结合酶UBE2M和雌激素受体ERα正反馈调节促进乳腺癌恶性表型的机制研究
  • 批准号:
    82073069
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
lncRNA SOX2OT与雄激素受体剪接变异体AR-V7形成正反馈环路促进前列腺癌恩杂鲁胺耐药的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

神経細胞を刺激するケイ素化合物構造の探索
寻找刺激神经细胞的硅化合物结构
  • 批准号:
    23K26385
  • 财政年份:
    2024
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Hormonal control of stamen filament growth
合作研究:雄蕊丝生长的激素控制
  • 批准号:
    2343701
  • 财政年份:
    2024
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Hormonal control of stamen filament growth
合作研究:雄蕊丝生长的激素控制
  • 批准号:
    2343702
  • 财政年份:
    2024
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Standard Grant
Shared and distinct genetic architecture of autoimmune and hormonal alopecias
自身免疫性脱发和激素性脱发的共同和独特的遗传结构
  • 批准号:
    MR/X030466/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Research Grant
外部刺激による非対称膜ベシクル内での効率的な酵素逐次反応の実現
利用外部刺激在不对称膜囊泡中实现高效的酶序贯反应
  • 批准号:
    23K23142
  • 财政年份:
    2024
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了