Seeing Data: are good big data visualisations possible?

查看数据:良好的大数据可视化可能吗?

基本信息

  • 批准号:
    AH/L009986/1
  • 负责人:
  • 金额:
    $ 28.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Seeing Data focuses on how people perceive representations of big data; that is, data visualisations. The proposed research starts from the premise that data are constructed by human decisions made during the data generation process. They are never raw, but always cooked (Bowker 2005); they do not just exist, but need to be generated (Manovich 2011). But big data are often assumed to 'just exist', and their representation through visualisations are taken as windows onto the world, even though some commentators have highlighted the dangers of such assumptions. For example Crawford (2013) states that 'the map is not the territory' in order to warn us against seeing visual representations of things as the things themselves. A second premise of the research is that the main way in which the general public gets to access big data is through data visualisations, 'the representation and presentation of data that exploits our visual perception abilities in order to amplify cognition' (Kirk 2013). Data visualisations, like the big data on which they are often based, are becoming increasingly ubiquitous: David McCandless's billion-dollar-o-gram, an animated visualisation of years lost due to US gun deaths and the website We Feel Fine which captures sentiment expressed online are just three examples of widely circulating data visualisations. If big data are constructed by the ways in which they are generated and if data visualisations are the main source of popular access to big data, then critical questions about the role of data visualisations need to be asked. We need to explore whether, given these factors, effective big data visualisations are ever possible, and if so, how effectiveness might be measured. In order to answer these questions, more understanding of the reception of data visualisations is needed. Seeing Data addresses this issue. The proposed research involves generating big data, combining it with existing data, visualizing that data, and examining the reception of these visualisations amongst the general public, who are the main consumers of data visualisations. Through these methods, the research will develop understanding of the reception of data visualisations, which will then be shared with the producers and consumers of such visualisations. Thus the research aims to enhance both the production and consumption of data visualisations.Questions about the reception of big data visualisations will be addressed through collaborative research carried out by a new media scholar, a data visualisation expert, a social science researcher working with large scale data and a visual communications scholar. Our empirical research takes as a case study data about a contentious social issue, migration, which is held by the Migration Observatory (MigObs) at the University of Oxford. MigObs aims to provide impartial, evidence-based analysis of data on migration and migrants in the UK, to inform media, public and policy debates; our research will explore whether data visualisations make it possible to meet this aim. Combining existing data about migration with newly-generated datasets, we will recruit field-leading data visualizers to produce visualisations of MigObs data. We will examine the reception of these visualisations in detail through in-depth focus group discussions with consumers of visualisations from the general public. To support this case study, we will also ask other consumers to keep diaries of their encounters with data visualisations in their everyday lives and their reactions to them. Thus we will explore whether effective big data visualisations are possible, given the constructedness of data and visualisations, what effectiveness might mean in this context and how effectiveness might be measured. We will also concretely help MigObs address some of the challenges it faces in clearly communicating its data to a range of stakeholders.
Seeing Data 关注人们如何感知大数据的表示;即数据可视化。所提出的研究的前提是数据是由人类在数据生成过程中做出的决策构建的。它们从来都不是生的,而是煮熟的(Bowker 2005);它们不仅存在,而且需要被生成(Manovich 2011)。但大数据通常被认为“只是存在”,并且它们通过可视化的表示被视为了解世界的窗口,尽管一些评论家强调了这种假设的危险。例如,克劳福德(Crawford,2013)指出“地图不是领土”,以警告我们不要将事物的视觉表征视为事物本身。该研究的第二个前提是,公众获取大数据的主要方式是通过数据可视化,“利用我们的视觉感知能力来增强认知的数据表示和呈现”(Kirk 2013)。数据可视化,就像它们所依据的大数据一样,正变得越来越普遍:大卫·麦坎德利斯的十亿美元-o-gram,一个动画可视化,显示了因美国枪支死亡而损失的岁月,以及捕捉表达的情绪的网站We Feel Fine网上只是广泛流传的数据可视化的三个例子。如果大数据是按照其生成方式构建的,并且如果数据可视化是大众获取大数据的主要来源,那么就需要提出关于数据可视化作用的关键问题。我们需要探索考虑到这些因素,有效的大数据可视化是否可能,如果可以,如何衡量有效性。为了回答这些问题,需要更多地了解数据可视化的接收。 Seeing Data 解决了这个问题。拟议的研究涉及生成大数据,将其与现有数据相结合,将数据可视化,并检查作为数据可视化的主要消费者的公众对这些可视化的接受程度。通过这些方法,研究将加深对数据可视化接收的理解,然后与此类可视化的生产者和消费者共享。因此,该研究旨在增强数据可视化的生产和消费。有关大数据可视化接受的问题将通过新媒体学者、数据可视化专家、大规模工作的社会科学研究人员进行的合作研究来解决。数据和视觉传达学者。我们的实证研究以牛津大学移民观察站 (MigObs) 持有的有关有争议的社会问题移民的数据作为案例研究。 MigObs 旨在对英国的移民和移民数据提供公正、基于证据的分析,为媒体、公众和政策辩论提供信息;我们的研究将探讨数据可视化是否能够实现这一目标。将现有的迁移数据与新生成的数据集相结合,我们将招募领域领先的数据可视化人员来生成 MigObs 数据的可视化。我们将通过与公众的可视化消费者进行深入的焦点小组讨论,详细研究这些可视化的接受情况。为了支持这个案例研究,我们还将要求其他消费者记录他们在日常生活中遇到的数据可视化以及他们对这些数据可视化的反应。因此,我们将探讨考虑到数据和可视化的构造性,有效的大数据可视化是否可能,在这种情况下有效性意味着什么以及如何衡量有效性。我们还将具体帮助 MigObs 解决其在向一系列利益相关者清晰传达数据方​​面所面临的一些挑战。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The work that visualisation conventions do
可视化约定所做的工作
Visual brokerage: Communicating data and research through visualisation.
视觉经纪:通过可视化交流数据和研究。
Making corpus data visible: visualising text with research intermediaries
使语料库数据可见:与研究中介一起可视化文本
  • DOI:
    http://dx.10.3366/cor.2017.0128
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Allen W
  • 通讯作者:
    Allen W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helen Kennedy其他文献

Development of an Aboriginal Resilience and Recovery Questionnaire – a collaboration between practitioners and help-seeking clients of a Victorian Aboriginal community controlled health service
制定原住民复原力和恢复调查问卷——维多利亚州原住民社区控制的卫生服务机构的从业者和寻求帮助的客户之间的合作
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Graham Gee;Carol Hulbert;Helen Kennedy;Joanne Dwyer;John Egan;Linda Holmes;Anita Mobourne;Yin Paradies
  • 通讯作者:
    Yin Paradies
Object naming induces reliance on orientation-independent representations during longer-term, but not short-term, visual remembering
物体命名会导致长期(而非短期)视觉记忆过程中对与方向无关的表征的依赖
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    P. Walker;Helen Kennedy;D. Berridge
  • 通讯作者:
    D. Berridge
Understanding 'difficult tracheal intubation' in neonatal anaesthesia. Comment on Br J Anaesth 2021; 126: 1173-81.
了解新生儿麻醉中的“困难气管插管”。
  • DOI:
    10.1016/j.bja.2021.06.034
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    A. Gardner;D. Eusuf;Helen Kennedy;Bronagh Patterson;Victoria Scott;C. Shelton
  • 通讯作者:
    C. Shelton
Pleura and Peritoneum
胸膜和腹膜
  • DOI:
    10.1159/000013890
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Alonso;W. Liauw;Helen Kennedy;N. Alzahrani;D. Morris
  • 通讯作者:
    D. Morris
Explainable AI for the Arts: XAIxArts
可解释的艺术人工智能:XAIxArts

Helen Kennedy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helen Kennedy', 18)}}的其他基金

Open Access Block Award 2024 - University of the West of Scotland
2024 年开放访问区块奖 - 西苏格兰大学
  • 批准号:
    EP/Z532630/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - University of the West of Scotland
2023 年开放访问区块奖 - 西苏格兰大学
  • 批准号:
    EP/Y530475/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant
The Digital Good Network: exploring equity, sustainability and resilience in people's relationships with and through digital technologies
数字良好网络:通过数字技术探索人们关系中的公平性、可持续性和复原力
  • 批准号:
    ES/X502352/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant
Open Access Block Award 2022 - University of the West of Scotland
2022 年开放访问区块奖 - 西苏格兰大学
  • 批准号:
    EP/X527403/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant
What Constitutes 'Good Data' in the Creative Economy? Case studies in media and cultural industries
什么构成创意经济中的“好数据”?
  • 批准号:
    AH/S012109/1
  • 财政年份:
    2019
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant
XR: CIIRKES / Extraordinary Circus: Creative Immersive Interdisciplinary Knowledge ExchangeS
XR:CIIRKES /非凡马戏团:创意沉浸式跨学科知识交流
  • 批准号:
    AH/R010234/1
  • 财政年份:
    2018
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant
Understanding Social Media Monitoring
了解社交媒体监控
  • 批准号:
    AH/L003775/2
  • 财政年份:
    2014
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Fellowship
Seeing Data: are good big data visualisations possible?
查看数据:良好的大数据可视化可能吗?
  • 批准号:
    AH/L009986/2
  • 财政年份:
    2014
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant
Understanding Social Media Monitoring
了解社交媒体监控
  • 批准号:
    AH/L003775/1
  • 财政年份:
    2014
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Fellowship
Inclusive New Media Design
包容性新媒体设计
  • 批准号:
    AH/E507115/2
  • 财政年份:
    2008
  • 资助金额:
    $ 28.57万
  • 项目类别:
    Research Grant

相似国自然基金

基于可信数据事件触发的网络化安全控制研究
  • 批准号:
    62373240
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数据与知识融合驱动的晶圆图缺陷生成式检测模型研究
  • 批准号:
    52375485
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向边缘智能的车联网数据安全关键技术研究
  • 批准号:
    62372100
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于参考道数据约束与时域卷积网络的大地电磁强干扰压制方法研究
  • 批准号:
    42364006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向层次化视觉数据的双曲学习方法研究
  • 批准号:
    62306070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proteomic and epigenetic alterations associated with plant-based diets and CVD
与植物性饮食和心血管疾病相关的蛋白质组学和表观遗传改变
  • 批准号:
    10643149
  • 财政年份:
    2023
  • 资助金额:
    $ 28.57万
  • 项目类别:
Large Animal Core
大型动物核心
  • 批准号:
    10668164
  • 财政年份:
    2023
  • 资助金额:
    $ 28.57万
  • 项目类别:
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
  • 批准号:
    10668166
  • 财政年份:
    2023
  • 资助金额:
    $ 28.57万
  • 项目类别:
Project 1: Greenspace to build resilience to climate change impacts on health: The good, the bad, and the future
项目 1:绿色空间,增强抵御气候变化对健康影响的能力:好的、坏的和未来
  • 批准号:
    10835396
  • 财政年份:
    2023
  • 资助金额:
    $ 28.57万
  • 项目类别:
COORDINATION, MONITORING, FOLLOW-UP, AND EVALUATION OF A CLINICAL TRIAL OF NESTORONE TESTOSTERONE GEL FOR MALE CONTRACEPTION
用于男性避孕的雀酮睾酮凝胶临床试验的协调、监测、随访和评估
  • 批准号:
    10800827
  • 财政年份:
    2023
  • 资助金额:
    $ 28.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了