USING CLAIMS DATA FOR CANCER SURVEILLANCE

使用索赔数据进行癌症监测

基本信息

  • 批准号:
    2010064
  • 负责人:
  • 金额:
    $ 38.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-03-17 至 2000-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: The overall purpose of this study is to examine the utility and validity of linking data from three claims-based sources to the Virginia Cancer Registry (VCR) for cancer surveillance. The study will focus on the five leading cancers in Virginia: breast, cervical, colorectal, lung, and prostate. The three claims-based files to be linked to the VCR are: Medicare, Medicaid, and the statewide hospital discharge summary files. Because of its high incidence, devastating impact, and potential preventability, monitoring cancer epidemiology is essential. An effective cancer surveillance program could help track groups at high risk for the disease and assess the value of interventions, such as screening. Surveillance mechanisms must produce information in a timely fashion to be useful to policy makers who are deciding about allocation of limited health care resources. Claims files offer an important potential source of routinely available, population-based, computer readable information that could supplement the cancer surveillance activities of statewide registries. These databases, however, have the limitations of minimal clinical content and association with billing activities. Accuracy of diagnosis coding is a particular concern, although one study indicated good accuracy for cancer diagnoses. Despite these limitations, linking claims files to cancer registries could capture more cancer incident cases and add to understanding of cancer care. Four databases will be linked in this study: 1. The Virginia Cancer Registry (VCR). Until 1990, reporting to the VCR was voluntary and included half the hospitals in Virginia; starting in 1990, reporting of cancer incident cases became mandatory. About 85% of the cases are reported by hospitals that include complete staging data; 2. Medicare files for Parts A and B, including all institutional and noninstitutional bills; 3. Virginia Medicaid files, including inpatient, outpatient, and pharmacy claims. The Medicaid files contain a large number of minority (46% black) and high risk patients; and 4. Virginia Health Information (VHI) files. Since 1993, VHI has maintained inpatient claims for all admissions to Virginia hospitals. To address the first Specific Aim, the latter three claims-based files will be linked to the VCR at the person level using AUTOMATCH, a product of Match Ware Technologies for probabilistic record linkages. The second specific Aim involves validating methods for identifying cancer incidence from the three claims files and assessing the reliability and validity of incidence and treatment data in the four data sources. Data will be abstracted from inpatient medical records and outpatient health care providers, and from reviewing laboratory, radiation treatment, and outpatient chemotherapy logs. A stratified random sample of 2,750 patients will be drawn, with the sampling protocol considering the likelihood that patients will be flagged as a cancer case by more than one of the data sources. Strata were created based on the data source of the sampled case (Figure 1, p. 52); sampled cases will be clustered within hospitals. Abstraction of inpatient records will be performed by the Virginia Health Quality Center, the state peer review organization. Collection of outpatient information will have four approaches: 1. A survey will be mailed to physicians from the VCR asking about the treatment given to a specified patient; 2. When physicians fail to respond to the mail survey, the hospital tumor registrar will contact physicians to get them to respond by mail or agree to a telephone interview; 3. Outpatient medical records will be abstracted for a random 10% sample of the 2,750 patients. The purpose of the validation is to judge the accuracy of the physicians' mailed responses. A VCR representative (a trained RN nurse abstractor) will conduct these reviews; and 4. For each hospital in the cluster sample, logs from pathology, radiotherapy, and chemotherapy units will be reviewed. Information from the primary data collection will be compared to that of the four data sources to assess their accuracy. The primary data will serve as the "gold standard" in determining the sensitivity and predictive values positive and negative of the four data files. The areas that will be examined include the definition of incident cases and initial surgical and nonsurgical treatment. An analysis will be performed to assess the representativeness of the different data sources in identifying cancer cases, using as a framework a Venn diagram showing potential overlap and discordance. The completeness of a surveillance approach combining all data sources will also be assessed by estimating the frequency of missed cases using capture-recapture techniques developed by naturalists. To assess further false negatives and the value of the capture-recapture method, a pilot study will be performed at Medical College of Virginia and three associated rural hospitals, combing all primary data sources and billing data to identify all cancer cases. The outcome of this project will be a clear sense, at least for Virginia, about the utility of linking administrative data files to a cancer registry for examining the incidence and initial treatment of cancer.
描述:本研究的总体目的是检验实用性 以及将来自三个基于索赔的来源的数据与弗吉尼亚州联系起来的有效性 用于癌症监测的癌症登记处 (VCR)。 该研究将重点关注 弗吉尼亚州的五种主要癌症:乳腺癌、宫颈癌、结直肠癌、肺癌和 前列腺。 链接到 VCR 的三个基于声明的文件是: 医疗保险、医疗补助和全州范围的出院摘要文件。 由于其高发生率、破坏性影响和潜在的 为了预防性,监测癌症流行病学至关重要。 一个有效的 癌症监测计划可以帮助追踪癌症高危人群 疾病并评估干预措施(例如筛查)的价值。 监督机制必须及时提供信息,以便 对于决定分配有限卫生资源的政策制定者很有用 护理资源。 索赔文件提供了常规可用的重要潜在来源, 基于人口的计算机可读信息可以补充 全州登记处的癌症监测活动。 这些数据库, 然而,临床内容和关联性有限 与计费活动。 诊断编码的准确性是一个特殊的问题 尽管一项研究表明癌症诊断的准确性很高,但仍令人担忧。 尽管有这些限制,将索赔文件与癌症登记处联系起来可以 捕捉更多癌症事件病例并增加对癌症护理的了解。 本研究将链接四个数据库: 1. 弗吉尼亚癌症 注册表(VCR)。 直到 1990 年,向 VCR 报告都是自愿的,并且包括 弗吉尼亚州一半的医院;从 1990 年开始,报告癌症 事件案例成为强制性的。 大约85%的病例是由 包含完整分期数据的医院; 2. A 部分的 Medicare 文件 B,包括所有机构和非机构法案; 3.弗吉尼亚州 医疗补助文件,包括住院、门诊和药房索赔。 这 医疗补助文件包含大量少数族裔(46% 黑人)和高风险 患者; 4. 弗吉尼亚健康信息 (VHI) 文件。 自 1993 年以来,VHI 保留了弗吉尼亚医院所有入院病人的住院索赔。 为了解决第一个具体目标,后三个基于声明的文件将 使用 AUTOMATCH(Match 的产品)在人员级别链接到 VCR 用于概率记录链接的 Ware Technologies。 第二个具体目标涉及验证癌症识别方法 三个索赔档案中的发生率并评估可靠性和 四个数据源中发病率和治疗数据的有效性。 数据 将从住院病历和门诊医疗保健中提取 提供者,以及审查实验室、放射治疗和 门诊化疗日志。 2,750 名患者的分层随机样本 将绘制,采样协议考虑以下可能性 患者将被多个数据标记为癌症病例 来源。 根据样本案例的数据源创建Strata (图 1,第 52 页);抽样病例将集中在医院内。 住院患者记录的提取将由弗吉尼亚卫生局进行 质量中心,国家同行评审组织。 收藏 门诊信息有四种途径: 1. 调查 从 VCR 邮寄给医生,询问患者的治疗情况 指定患者; 2. 当医生未能回复邮件调查时, 医院肿瘤登记员将联系医生让他们做出回应 通过邮件或同意电话采访; 3.门诊病历 将从 2,750 名患者中随机抽取 10% 的样本。 这 验证的目的是判断医生邮寄的信息的准确性 回应。 VCR 代表(经过培训的 RN 护士提取员)将 进行这些审查; 4. 对于集群样本中的每家医院,记录 来自病理学、放疗和化疗单位的审查将被审查。 来自主要数据收集的信息将与原始数据收集的信息进行比较 四个数据源来评估其准确性。 主要数据将作为 确定敏感性和预测值的“黄金标准” 四个数据文件的正负。 将要进行的领域 检查的内容包括事件病例的定义以及初始手术和 非手术治疗。 将进行分析以评估 不同数据源在癌症识别中的代表性 案例,使用维恩图作为框架,显示潜在的重叠和 不和谐。 结合所有数据的监测方法的完整性 还将通过估计漏检病例的频率来评估来源 使用博物学家开发的捕获-再捕获技术。 评估 进一步的误报和捕获-重新捕获方法的价值,a 试点研究将在弗吉尼亚医学院和三个 关联乡村医院,梳理所有主要数据来源和计费 识别所有癌症病例的数据。 这个项目的结果将是一个明确的感觉,至少对于弗吉尼亚州来说, 关于将管理数据文件链接到癌症登记处的实用程序 用于检查癌症的发病率和初始治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LYNNE T PENBERTHY其他文献

LYNNE T PENBERTHY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LYNNE T PENBERTHY', 18)}}的其他基金

Cancer Research Informatics and Services
癌症研究信息学和服务
  • 批准号:
    7698824
  • 财政年份:
    2008
  • 资助金额:
    $ 38.8万
  • 项目类别:
Improving cancer case & chemotherapy capture rates from oncology practices
改善癌症案例
  • 批准号:
    7917765
  • 财政年份:
    2007
  • 资助金额:
    $ 38.8万
  • 项目类别:
Improving cancer case & chemotherapy capture rates from oncology practices
改善癌症案例
  • 批准号:
    7393324
  • 财政年份:
    2007
  • 资助金额:
    $ 38.8万
  • 项目类别:
Improving cancer case & chemotherapy capture rates from oncology practices
改善癌症案例
  • 批准号:
    7241215
  • 财政年份:
    2007
  • 资助金额:
    $ 38.8万
  • 项目类别:
Pilot to Evaluate Second Primary Cancers in the Elderly
评估老年人第二原发癌症的试点
  • 批准号:
    6546327
  • 财政年份:
    2002
  • 资助金额:
    $ 38.8万
  • 项目类别:
USING CLAIMS DATA FOR CANCER SURVEILLANCE
使用索赔数据进行癌症监测
  • 批准号:
    6164221
  • 财政年份:
    1997
  • 资助金额:
    $ 38.8万
  • 项目类别:
USING CLAIMS DATA FOR CANCER SURVEILLANCE
使用索赔数据进行癌症监测
  • 批准号:
    2882455
  • 财政年份:
    1997
  • 资助金额:
    $ 38.8万
  • 项目类别:
USING CLAIMS DATA FOR CANCER SURVEILLANCE
使用索赔数据进行癌症监测
  • 批准号:
    2668048
  • 财政年份:
    1997
  • 资助金额:
    $ 38.8万
  • 项目类别:
Cancer Research Informatics and Services
癌症研究信息学和服务
  • 批准号:
    7826930
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Cancer Research Informatics and Services
癌症研究信息学和服务
  • 批准号:
    8097558
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:

相似海外基金

VALIDATION OF FAMILY HISTORY OF CANCER QUESTIONNAIRE
癌症家族史问卷的验证
  • 批准号:
    6356467
  • 财政年份:
    1999
  • 资助金额:
    $ 38.8万
  • 项目类别:
VALIDATION OF FAMILY HISTORY OF CANCER QUESTIONNAIRE
癌症家族史问卷的验证
  • 批准号:
    6153558
  • 财政年份:
    1999
  • 资助金额:
    $ 38.8万
  • 项目类别:
VALIDATION OF FAMILY HISTORY OF CANCER QUESTIONNAIRE
癌症家族史问卷的验证
  • 批准号:
    6369708
  • 财政年份:
    1999
  • 资助金额:
    $ 38.8万
  • 项目类别:
USING CLAIMS DATA FOR CANCER SURVEILLANCE
使用索赔数据进行癌症监测
  • 批准号:
    6164221
  • 财政年份:
    1997
  • 资助金额:
    $ 38.8万
  • 项目类别:
USING CLAIMS DATA FOR CANCER SURVEILLANCE
使用索赔数据进行癌症监测
  • 批准号:
    2882455
  • 财政年份:
    1997
  • 资助金额:
    $ 38.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了