Genetic risk discovery using WGS from a population-based resource of 10,000 suicide deaths with DNA
使用全基因组测序 (WGS) 从 10,000 例自杀死亡病例的人口资源中发现遗传风险
基本信息
- 批准号:10553712
- 负责人:
- 金额:$ 38.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAutopsyBackBehaviorCause of DeathCessation of lifeCollaborationsComplexDNADataDevelopmentDiagnosisDiagnosticEnvironmentEnvironmental ExposureFeeling suicidalGenesGeneticGenetic EnhancementGenetic RiskGenetic studyGeographyHandHealthHeritabilityIndividualInterventionKnowledgeLinkMedicalMedical ExaminersMedical RecordsMeta-AnalysisMethodsMolecularOutcomePathway interactionsPharmaceutical PreparationsPhenotypePlayPopulationPopulation DatabasePublic HealthRecording of previous eventsRecordsRecurrenceResearchResourcesRiskRisk FactorsRoleSample SizeSamplingServicesSingle Nucleotide PolymorphismSuicideUtahValidationVariantdata resourcedemographicseffective interventiongenetic variantgenome sequencinggenome wide association studygenome-widehigh risk populationinnovationnovelpharmacologicphenotypic datapolygenic risk scorepopulation basedpreventable deathprotein protein interactionrisk perceptionrisk variantsample collectionsuicidal behaviorsuicidal morbiditysuicidal risksuicide ratetraitvariant detectionwhole genome
项目摘要
ABSTRACT
Suicide is the 10th leading cause of death, with over 47,000 preventable deaths per year in the U.S. alone. The
rate of suicide death across the U.S. has risen by 33% over the past two decades. In spite of this dramatic
public health crisis, suicide research lags far behind other major health conditions due to the perception that
risk factors are too complex and uncontrollable for study. Importantly, while environment has undeniable
impact, evidence suggests that genetic factors play a major role in suicide death. While the study of genetic
risks is therefore promising, most studies of suicide genetics have focused on the much more common traits of
suicidal thoughts and behaviors. This strategy has allowed other research groups to acquire sufficiently
statistically-powered samples. However, suicidal behaviors can be difficult to quantify, and represent
individuals with a wide range of risk for later suicide death. Using the unique resources available to the Utah
Suicide Genetic Risk Study (USGRS), we are able to study the genetic risks of the unambiguous, high-impact
health outcome of suicide death directly. The USGRS currently has DNA from >6,000 population-ascertained
suicide deaths; this resource grows by ~650 cases per year through an unprecedented two-decade
collaboration with the Utah Department of Health’s centralized Office of the Medical Examiner (OME). We have
completed whole genome sequence (WGS) data on a subset of 281 of the Utah suicide deaths selected for
high genetic risk. We have Illumina PsychArray data on these cases and additional Utah suicides (total
N=4,382). All cases are linked to the Utah Population Database (UPDB), a statewide resource that includes
demographic data and comprehensive medical records. The UPDB phenotypic data also includes unique
information on familial risk far exceeding that of other data resources through genealogical records that go
back to the 1700s. To truly understand risk of suicide death and to implement highly effective interventions
that provide appropriate, targeted services to those most likely to die, we must understand the risks specifically
associated with suicide deaths. This proposal focuses on the identification, validation, characterization, and
replication of variants with high functional impact that implicate genes and gene pathways important for risk of
suicide death. From our WGS data, we have already detected high-impact structural variants (SVs) and single
nucleotide variants (SNVs) showing genome-wide significant gene pathway enrichment and protein-protein
interactions. These pathways are also supported by genes implicated in our genome-wide association
analyses of 3,413 Utah suicide deaths, suggesting overlap at the functional level of rare and common risk
variation. Extensive familial risk data and large sample size will allow us to select an additional subset of 760
suicides with enhanced genetic risk to replicate and extend our current findings, setting the stage for
identification of high-risk individuals, and for development of targeted interventions.
抽象的
自杀是第十大死因,仅在美国每年就有超过 47,000 例可预防的死亡。
尽管情况如此惊人,但过去 20 年来,美国的自杀死亡率仍上升了 33%。
在公共卫生危机中,自杀研究远远落后于其他主要健康状况,因为人们认为
危险因素过于复杂且难以控制,但不可否认的是,环境因素是不可否认的。
影响,有证据表明遗传因素在自杀死亡中发挥着重要作用,而遗传研究。
因此,风险是有希望的,大多数自杀遗传学研究都集中在更常见的特征上
这种策略已经让其他研究小组充分了解了自杀想法和行为。
然而,自杀行为可能很难量化和表征。
利用犹他州可用的独特资源,帮助那些具有广泛自杀风险的个人。
自杀遗传风险研究(USGRS),我们能够研究明确的、高影响力的遗传风险
USGRS 目前已确定超过 6,000 名人口的 DNA。
自杀死亡人数在前所未有的二十年里每年增加约 650 例
我们与犹他州卫生部的中央体检办公室 (OME) 合作。
完成了 281 例犹他州自杀死亡事件的全基因组序列 (WGS) 数据
我们有这些病例和犹他州其他自杀病例的 Illumina PsychArray 数据(总计)。
N=4,382)。所有病例均链接至犹他州人口数据库 (UPDB),这是一个全州范围的资源,其中包括
人口统计数据和综合医疗记录还包括独特的表型数据。
有关家庭风险的信息远远超过通过遗传记录获得的其他数据资源
回到 1700 年代,真正了解自杀风险并实施高效的干预措施。
为那些最有可能死亡的人提供适当的、有针对性的服务,我们必须具体了解风险
该提案的重点是识别、验证、特征描述和自杀死亡。
具有高功能影响的变异的复制意味着基因和基因途径对风险很重要
从我们的 WGS 数据中,我们已经检测到高影响结构变异 (SV) 和单一死亡。
核苷酸变异(SNV)显示全基因组显着的基因途径富集和蛋白质-蛋白质
这些途径也得到了与我们全基因组关联相关的基因的支持。
对犹他州 3,413 例自杀死亡的分析表明罕见风险和常见风险在功能层面上存在重叠
广泛的家族风险数据和大样本量将使我们能够选择 760 个额外的子集。
具有较高遗传风险的自杀来复制和扩展我们目前的发现,为
识别高风险个体,并制定有针对性的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hilary Coon其他文献
Hilary Coon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hilary Coon', 18)}}的其他基金
Prediction of suicide death using EHR and polygenic risk scores
使用 EHR 和多基因风险评分预测自杀死亡
- 批准号:
10659155 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Genetic risk discovery using WGS from a population-based resource of 10,000 suicide deaths with DNA
使用全基因组测序 (WGS) 从 10,000 例自杀死亡病例的人口资源中发现遗传风险
- 批准号:
10337286 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Prediction of suicide death using EHR and polygenic risk scores
使用 EHR 和多基因风险评分预测自杀死亡
- 批准号:
10027263 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Prediction of suicide death using EHR and polygenic risk scores
使用 EHR 和多基因风险评分预测自杀死亡
- 批准号:
10239191 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Prediction of suicide death using EHR and polygenic risk scores
使用 EHR 和多基因风险评分预测自杀死亡
- 批准号:
10451573 - 财政年份:2020
- 资助金额:
$ 38.13万 - 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
- 批准号:
9275545 - 财政年份:2013
- 资助金额:
$ 38.13万 - 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
- 批准号:
9114177 - 财政年份:2013
- 资助金额:
$ 38.13万 - 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
- 批准号:
8850718 - 财政年份:2013
- 资助金额:
$ 38.13万 - 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
- 批准号:
9033440 - 财政年份:2013
- 资助金额:
$ 38.13万 - 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
- 批准号:
8575486 - 财政年份:2013
- 资助金额:
$ 38.13万 - 项目类别:
相似海外基金
Neurodegeneration Underlying Distinct Disabilities in Multiple Sclerosis Using a Cell-Specific, Region-Specific, and Sex-Specific Approach
使用细胞特异性、区域特异性和性别特异性方法研究多发性硬化症中明显残疾的神经退行性变
- 批准号:
10663020 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
Project 3 - Mechanisms of extra- and intra-cellular calcification
项目3——细胞外和细胞内钙化的机制
- 批准号:
10628930 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
Dried blood spot proteomics analysis of newborn screening cards to identify prognostic markers of SIDS risk
对新生儿筛查卡进行干血点蛋白质组学分析,以确定 SIDS 风险的预后标志物
- 批准号:
10734386 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
In vivo Evaluation of USP30 Inhibitors in Models Relevant to Parkinson's Disease
USP30 抑制剂在帕金森病相关模型中的体内评价
- 批准号:
10603217 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别:
Neurodegeneration Underlying Distinct Disabilities in Multiple Sclerosis Using a Cell-Specific, Region-Specific, and Sex-Specific Approach
使用细胞特异性、区域特异性和性别特异性方法研究多发性硬化症中明显残疾的神经退行性变
- 批准号:
10663020 - 财政年份:2023
- 资助金额:
$ 38.13万 - 项目类别: