Deciphering Mechanisms of Nitrogen-Containing Bisphosphonates
含氮双膦酸盐的破译机制
基本信息
- 批准号:10553672
- 负责人:
- 金额:$ 24.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAffectAgeAmericanAwardBindingBiological AssayBiologyBone DensityBone DiseasesBone necrosisCRISPR interferenceCellsCellular AssayChargeCytosolDrug PrescriptionsEndocrineEndocrinologyEpigenetic ProcessFacultyFemoral FracturesFrightFutureGenesGenetic ScreeningGenetic TranscriptionGenetic studyGoalsGrantHospitalsImmersionImpairmentIn VitroInvestigationJawKidneyKnock-outKnockout MiceLeadershipManuscriptsMediatingMentorsMentorshipModelingMolecularMolecular TargetMusNFIC geneNitrogenOsteoclastsOsteopeniaOsteoporosisOvariectomyPathway interactionsPatientsPersonsPharmaceutical PreparationsPhasePhysiologic calcificationPhysiologicalPopulationProtein BiochemistryProteinsPublishingQuality of lifeResearchResearch InstituteResearch PersonnelResistanceRiskRoleSkeletal systemTechnical ExpertiseTimeToxic effectTrainingTreatment EfficacyTreatment Side EffectsWild Type MouseWorkWritingbisphosphonatebonebone cellbone lossbone masscareerdosagedrug mechanismgenome wide association studygenome wide screeninterestmembermouse modelpatient populationpatient responsepreventprogramspublic health relevanceresponseside effectskillsstandard caretenure tracktherapy developmenttraffickingtranscription factortreatment strategy
项目摘要
Project Summary/Abstract
Osteoporosis and low bone mass (osteopenia) are estimated to affect 55 percent of the American population
over the age of 50; over 50 million people in total, with major consequences for the patients' quality of life. The
current standard treatment for osteoporosis is administration of nitrogen-containing bisphosphonates (NBPs).
However, the mechanism by which these highly-charged drugs enter, traffic through, and reach their molecular
targets and effect target cells is poorly understood. The long-term goal of this proposal is to deconstruct the
molecular pathways essential for NBP response. To do this, I will build upon preliminary genetic studies by
using cell assays and mouse models, as well as in vitro binding and functional assays to explore the
interactions between NBPs and my identified targets. Our previous work utilized two distinct high-throughput
genome-wide screens to identify over 200 genes required for the action of NBPs. In two recent manuscripts, I
have initially focused on the role of two genes, ATRAID and SLC37A3, that strongly affect the response to
NBPs, and found them likely to be required for the endocytic trafficking of these drugs. This proposal builds
upon this preliminary work to i) characterize the physiological role of ATRAID and SLC37A3 in the organismal
response to NBPs, ii) further examine their basal molecular function and how they facilitate NBP trafficking,
and iii) investigate the role of two transcription factors, associated by GWAS with changes in BMD, that when
depleted may sensitize cells to the effects of NBPs. Together, these studies generate a broader picture of the
molecular pathways that NBP uses to affect cells by investigating other genes identified in our initial screens.
While this proposal by necessity focuses on a subset of identified genes, I envision it will set the stage for my
future work determining how genes identified in our screens may predict patient response to NBPs, including
efficacy of treatment, dosage of NBPs needed, and adverse side effects. Moreover, this focus on
understanding the mechanisms of an inexpensive, commonly prescribed drug will bring new perspectives and
hypotheses to the development of treatment strategies for osteoporosis.
During the early stage of this award, I will gain valuable technical skills, including in analysis of mouse models
of osteoporosis, culture of primary bone cells, and biochemistry of protein interactions, as well as a deeper
training and immersion in bone and endocrine biology, that will altogether enable me to develop a unique
research program, which I intend to establish at a hospital-based research institute. Under the mentoring of my
formal advisory committee, I will develop important soft skills, such as presentation skills, lab leadership, and
grant writing. This combination of training, support and career mentoring will be instrumental in my transition to
independence as a tenure-track faculty member.
项目概要/摘要
据估计,骨质疏松症和低骨量(骨质减少)影响着 55% 的美国人口
50岁以上;总共超过 5000 万人,对患者的生活质量产生了重大影响。这
目前骨质疏松症的标准治疗是给予含氮双膦酸盐(NBP)。
然而,这些高电荷药物进入、运输和到达其分子的机制
对靶标和作用靶细胞知之甚少。该提案的长期目标是解构
NBP 反应所必需的分子途径。为此,我将在初步遗传学研究的基础上
使用细胞测定和小鼠模型以及体外结合和功能测定来探索
NBP 和我确定的目标之间的相互作用。我们之前的工作利用了两种不同的高通量
全基因组筛选,以确定 NBP 发挥作用所需的 200 多个基因。在最近的两篇手稿中,我
最初关注的是两个基因 ATRAID 和 SLC37A3 的作用,它们强烈影响对
NBP,并发现它们可能是这些药物的内吞运输所必需的。该提案构建
根据这项初步工作,i) 描述 ATRAID 和 SLC37A3 在生物体中的生理作用
对 NBP 的反应,ii) 进一步检查它们的基础分子功能以及它们如何促进 NBP 贩运,
iii) 研究两个转录因子的作用,通过 GWAS 与 BMD 变化相关,当
耗尽可能会使细胞对 NBP 的作用敏感。这些研究共同产生了更广泛的图景
NBP 通过研究我们最初筛选中发现的其他基因来影响细胞的分子途径。
虽然这个提议必然关注已识别基因的一个子集,但我想它将为我的研究奠定基础。
未来的工作将确定我们筛选中识别的基因如何预测患者对 NBP 的反应,包括
治疗效果、所需 NBP 剂量以及不良副作用。此外,本次重点关注
了解廉价、常用处方药物的机制将带来新的视角和
制定骨质疏松症治疗策略的假设。
在获得该奖项的早期阶段,我将获得宝贵的技术技能,包括小鼠模型的分析
骨质疏松症、原代骨细胞培养、蛋白质相互作用的生物化学以及更深入的研究
骨骼和内分泌生物学的培训和沉浸,这将使我能够开发出独特的
我打算在一家医院研究所建立一个研究计划。在我的指导下
在正式的咨询委员会中,我将培养重要的软技能,例如演讲技巧、实验室领导能力和
授予写作。这种培训、支持和职业指导的结合将有助于我过渡到
作为终身教授的独立性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Elizabeth Surface其他文献
Lauren Elizabeth Surface的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren Elizabeth Surface', 18)}}的其他基金
Deciphering Mechanisms of Nitrogen-Containing Bisphosphonates - Admin Supplement
破译含氮双膦酸盐的机制 - 管理补充
- 批准号:
10732846 - 财政年份:2022
- 资助金额:
$ 24.39万 - 项目类别:
Deciphering Mechanisms of Nitrogen-Containing Bisphosphonates
含氮双膦酸盐的破译机制
- 批准号:
10531297 - 财政年份:2022
- 资助金额:
$ 24.39万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Ion Mobility Spectrometry- quadrupole Time-of-Flight (IMS-qToF) Mass Spectrometer
离子淌度光谱仪 - 四极杆飞行时间 (IMS-qToF) 质谱仪
- 批准号:
10630627 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Age Differences and Mechanisms of Ketogenic Diet Induced Bone Loss
生酮饮食导致骨质流失的年龄差异和机制
- 批准号:
10740305 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Impact of Congenital Hyperinsulinism on Trajectories of Neurocognitive Function Across School Age
先天性高胰岛素血症对整个学龄期神经认知功能轨迹的影响
- 批准号:
10723317 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别: