Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
基本信息
- 批准号:10543561
- 负责人:
- 金额:$ 77.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-15 至 2023-12-30
- 项目状态:已结题
- 来源:
- 关键词:AIDS-Related Opportunistic InfectionsAcuteAnabolismAntitubercular AgentsAtypical MycobacteriaBacillusBiochemicalBiologicalBiological AssayBiological AvailabilityBiotinBiotin Metabolism PathwayCellsCellular StructuresChronicClassificationCommunicable DiseasesDataDrug InteractionsDrug KineticsDrug TargetingDrug resistanceEnsureEnzyme InhibitionEnzymesEtiologyEvaluationGenerationsGeneticGoalsHumanitiesKnowledgeLeadLigaseLigationMeasuresMedicineMetabolismMinnesotaMolecular ConformationMulti-Drug ResistanceMultiple drug resistant Mycobacteria TuberculosisMusMycobacterium tuberculosisNatural ProductsOralPathway interactionsPatientsPharmaceutical ChemistryPharmaceutical PreparationsPropertyProteinsRegimenResearchResistanceSafetyStructureTuberculosisUniversitiesValidationWorkWritingabsorptionanalogcofactorcombatdesigndrug discoverydrug dispositionefficacy studyextensive drug resistancegenetic approachgenome sequencingglobal healthimprovedin vivoinhibitormedical schoolsmortalitymouse modelmutantmycobacterialnanomolarnovel therapeuticsoverexpressionpathogenpre-clinicalpreclinical developmentprogramsresistance frequencyresistance mechanismresistant strainsmall molecular inhibitorsynergismtreatment durationtuberculosis drugswhole genome
项目摘要
SUMMARY
Mycobacterium tuberculosis (Mtb), the principal etiological agent of tuberculosis (TB), infects over one-third of
humanity and is now the leading cause of infectious disease mortality by a single pathogen. Mtb requires biotin
for survival and synthesizes this essential cofactor de novo. In preliminary studies using a genetic approach,
we have shown biotin biosynthesis and ligation are essential for Mtb infection in mice. We have synthesized a
selective nanomolar inhibitor of biotin protein ligase termed Bio-AMS that targets the enzyme biotin protein
ligase (BPL,) responsible for the ligation of biotin onto biotin-dependent enzymes. We have also identified the
natural product acidomycin, which targets the final step of biotin biosynthesis catalyze by BioB. However, Bio-
AMS and acidomycin have liabilities in their drug disposition properties leading to rapid clearance, poor volume
of distribution, and limited oral bioavailability. There are also gaps in our knowledge regarding their mechanism
of resistance and activity when combined with other TB drugs. The objectives of this application are: 1) to
develop our lead compounds Bio-AMS and acidomycin through the optimization of their ADME (absorption,
distribution, metabolism and elimination) properties and pharmacokinetic parameters into viable preclinical
candidates, 2) to more deeply illuminate the mechanism of action and resistance in Mtb, 3) to determine the
safety profile and potential drug-drug interactions, and 4) to identify interactive effects with other TB drugs (i.e.
synergy). We will accomplish the overall objectives of this application by pursuing three specific aims. In aim 1,
we will carry out an iterative structure-based medicinal chemistry program of Bio-AMS and acidomycin to
concurrently optimize pharmacokinetic (PK) parameters and whole-cell activity using a combination of
approaches including fluorination, structural simplification, and introduction of conformation constraints. In aim
2, we will perform biochemical and cellular studies to evaluate enzyme inhibition, target engagement, cellular
accumulation, and whole-cell activity against Mtb as well as drug-resistant strains. Generation of resistant
strains followed by whole-genome sequencing will be used to characterize potential resistance mechanisms
and determine the resistance frequency. Finally, combination studies with various first and second-line TB
drugs will be undertaken to assess potential for synergy. In aim 3, the Bio-AMS and acidomycin analogues will
be assessed in vivo to determine their complete pharmacokinetic parameters with a goal to improve on the
volume of distribution (Vd), intrinsic clearance (CL), and bioavailability (F). We will evaluate compounds
against a panel of assays (hERG, CYP inhibition, Ames mutagenicity) to ensure safety and selectivity. In vivo
efficacy studies will be done using murine models of acute and chronic TB infection
概括
结核分枝杆菌 (Mtb) 是结核病 (TB) 的主要病原体,感染超过三分之一的人
人类,现在是由单一病原体引起的传染病死亡的主要原因。结核分枝杆菌需要生物素
为了生存并从头合成这种必需的辅助因子。在使用遗传方法的初步研究中,
我们已经证明生物素生物合成和连接对于小鼠 Mtb 感染至关重要。我们合成了一个
生物素蛋白连接酶的选择性纳摩尔抑制剂,称为 Bio-AMS,靶向生物素蛋白酶
连接酶(BPL)负责将生物素连接到生物素依赖性酶上。我们还确定了
天然产物酸霉素,其目标是 BioB 催化的生物素生物合成的最后一步。然而,生物
AMS 和酸霉素的药物处置特性存在缺陷,导致清除速度快、容量差
分布和口服生物利用度有限。我们对其机制的了解也存在差距
与其他结核病药物联合使用时的耐药性和活性。该应用程序的目标是:1)
通过优化 ADME(吸收、
分布、代谢和消除)特性和药代动力学参数转化为可行的临床前
候选人,2)更深入地阐明 Mtb 的作用和抵抗机制,3)确定
安全性概况和潜在的药物间相互作用,以及 4) 确定与其他结核病药物(即,
协同作用)。我们将通过追求三个具体目标来实现此应用程序的总体目标。在目标 1 中,
我们将开展 Bio-AMS 和酸霉素的基于迭代结构的药物化学项目,以
使用以下组合同时优化药代动力学 (PK) 参数和全细胞活性
方法包括氟化、结构简化和引入构象约束。瞄准目标
2、我们将进行生化和细胞研究,以评估酶抑制、靶标参与、细胞
积累和针对 Mtb 以及耐药菌株的全细胞活性。耐药菌的产生
菌株随后进行全基因组测序将用于表征潜在的耐药机制
并确定电阻频率。最后,与各种一线和二线结核病的联合研究
将评估药物的协同作用潜力。在目标 3 中,Bio-AMS 和酸霉素类似物将
进行体内评估以确定其完整的药代动力学参数,以改善
分布容积 (Vd)、内在清除率 (CL) 和生物利用度 (F)。我们将评估化合物
针对一系列检测(hERG、CYP 抑制、Ames 致突变性)以确保安全性和选择性。体内
将使用急性和慢性结核感染的小鼠模型进行疗效研究
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural and Functional Characterization of Mycobacterium tuberculosis Homoserine Transacetylase.
结核分枝杆菌高丝氨酸转乙酰酶的结构和功能特征。
- DOI:
- 发表时间:2023-03-10
- 期刊:
- 影响因子:5.3
- 作者:Sharma, Sachin;Jayasinghe, Yahani P;Mishra, Neeraj Kumar;Orimoloye, Moyosore O;Wong, Tsung;Dalluge, Joseph J;Ronning, Donald R;Aldrich, Courtney C
- 通讯作者:Aldrich, Courtney C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Courtney C Aldrich其他文献
Antimetabolite poisoning of cofactor biosynthesis.
辅因子生物合成的抗代谢物中毒。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Leonardo K Martinelli;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Going Viral.
病毒式传播。
- DOI:
10.1021/acsinfecdis.5b00098 - 发表时间:
2015 - 期刊:
- 影响因子:5.3
- 作者:
Kristen N Kindrachuk;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Courtney C Aldrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Courtney C Aldrich', 18)}}的其他基金
Optimization of rifamycins to overcome intrinsic resistance of nontuberculous mycobacteria to improve treatment of NTM lung disease
优化利福霉素以克服非结核分枝杆菌的内在耐药性,改善 NTM 肺病的治疗
- 批准号:
10713137 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
10088387 - 财政年份:2020
- 资助金额:
$ 77.99万 - 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
9895968 - 财政年份:2020
- 资助金额:
$ 77.99万 - 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
- 批准号:
10322125 - 财政年份:2019
- 资助金额:
$ 77.99万 - 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
- 批准号:
9890916 - 财政年份:2018
- 资助金额:
$ 77.99万 - 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
- 批准号:
10368998 - 财政年份:2018
- 资助金额:
$ 77.99万 - 项目类别:
2017 Tuberculosis Drug Discovery and Development Gordon Research Conference and Gordon Research Seminar
2017结核病药物发现与开发戈登研究大会暨戈登研究研讨会
- 批准号:
9330545 - 财政年份:2017
- 资助金额:
$ 77.99万 - 项目类别:
A Fluorescence Displacement Assay for the Biotin Biosynthetic Enzyme BioA
生物素生物合成酶 BioA 的荧光置换测定
- 批准号:
8403185 - 财政年份:2012
- 资助金额:
$ 77.99万 - 项目类别:
A fluorescence displacement assay for BioA: An enzyme involved in biotin biosynth
BioA 的荧光置换测定:一种参与生物素生物合成的酶
- 批准号:
8262096 - 财政年份:2012
- 资助金额:
$ 77.99万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Therapeutic enzyme depletion of L-serine for cancer treatment
L-丝氨酸的治疗性酶消耗用于癌症治疗
- 批准号:
10650618 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别:
The role and regulation of mitochondrial localization in mature neurons.
成熟神经元线粒体定位的作用和调节。
- 批准号:
10634116 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别:
Discovery of a pigment produced by Streptococcus pyogenes
发现化脓性链球菌产生的色素
- 批准号:
10680293 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别:
Ferroptosis in knock-in sepiapterin reductase mutation rabbits
敲入墨蝶呤还原酶突变兔的铁死亡
- 批准号:
10747716 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别: