Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
基本信息
- 批准号:9890916
- 负责人:
- 金额:$ 76.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-25 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS-Related Opportunistic InfectionsAcinetobacter baumanniiAcuteAdenosineAnabolismAnti-Bacterial AgentsAntitubercular AgentsAtypical MycobacteriaBacillusBiochemicalBiochemistryBiological AssayBiological AvailabilityCellsCellular StructuresChemistryChronicCommunicable DiseasesDoseDrug InteractionsDrug KineticsDrug resistanceESKAPE pathogensEnsureEnzyme InhibitionEnzymesEscherichia coliEtiologyEvaluationExtreme drug resistant tuberculosisFluorineGenerationsGeneticGoalsInfectionIronIron Chelating AgentsKlebsiella pneumoniaeKnowledgeLeadMeasuresMicrobiologyMicronutrientsModificationMolecular ConformationMulti-Drug ResistanceMusMycobacterium tuberculosisNucleosidesOralPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhosphotransferasesPropertyPseudomonas aeruginosaResearchResistanceSafetySiderophoresStructureToxic effectTuberculosisValidationWorkanalogbasecombatdesigndrug dispositiondrug metabolismefficacy studyextensive drug resistancegenetic approachgenome sequencingglobal healthimprovedin vivoinhibitor/antagonistlead candidatemortalitymouse modelmultidisciplinarymutantmycobactinsnanomolarnovel therapeuticspathogenprogramsresistance frequencyresistance mechanismresistant strainsmall moleculesynergismtargeted agenttuberculosis drugsuptakewhole genome
项目摘要
SUMMARY
Mycobacterium tuberculosis (Mtb), the principal etiological agent of tuberculosis (TB), infects over one-third of
humanity and is now the leading cause of infectious disease mortality by a single pathogen. Mtb requires iron
for survival and obtains this essential micronutrient in vivo through the synthesis, secretion, and re-uptake of
siderophores or small-molecule iron chelators known as the mycobactins. In preliminary studies using a
genetic approach, we have shown mycobactin biosynthesis is essential for Mtb infection in mice. We have
synthesized a selective nanomolar inhibitor of mycobactin biosynthesis termed Sal-AMS that targets the
enzyme MbtA, responsible for the first and committed biosynthetic step of the mycobactins. The objectives of
this application are: 1) to dramatically improve upon the in vivo efficacy of our lead compound Sal-AMS
through the optimization of its pharmacokinetic parameters and potency, 2) to more deeply illuminate the
mechanism of action and resistance in Mtb, 3) to determine the safety profile and potential drug-drug
interactions, and 4) to identify interactive effects with other TB drugs (i.e. synergy). We will accomplish the
overall objectives of this application by pursuing three specific aims. In aim 1, we will carry out an iterative
structure-based medicinal chemistry program to concurrently optimize pharmacokinetic (PK) parameters and
whole-cell activity using a combination of approaches including fluorination, structural simplification of the
nucleoside, and introduction of conformation constraints into the inhibitor. In aim 2, we will perform biochemical
and cellular studies to evaluate enzyme inhibition, target engagement, cellular accumulation, and whole-cell
activity against Mtb as well as drug-resistant strains. Generation of resistant strains followed by whole-genome
sequencing will be used to characterize potential resistance mechanisms and determine the resistance
frequency. Finally, combination studies with various first and second-line TB drugs will be undertaken to
assess potential for synergy. In aim 3, the siderophore inhibitors will be assessed in vivo to determine their
complete pharmacokinetic parameters with a goal to improve on the volume of distribution (Vd), intrinsic
clearance (CL), and bioavailability (F). We will conduct chronic toxicity studies and evaluate compounds
against a panel of assays (hERG, CYP inhibition, kinase panel) to ensure safety and selectivity. In vivo
efficacy studies will be done using a murine model of TB infection.
概括
结核分枝杆菌 (Mtb) 是结核病 (TB) 的主要病原体,感染超过三分之一的人
人类,现在是由单一病原体引起的传染病死亡的主要原因。山地车需要铁
为了生存并通过合成、分泌和再摄取获得体内必需的微量营养素
铁载体或小分子铁螯合剂,称为分枝杆菌素。在初步研究中使用
通过遗传方法,我们已经证明分枝杆菌素生物合成对于小鼠 Mtb 感染至关重要。我们有
合成了一种选择性纳摩尔分枝杆菌素生物合成抑制剂,称为 Sal-AMS,其目标是
MbtA 酶,负责分枝杆菌素生物合成的第一步和关键步骤。的目标
该应用的目的是:1) 显着提高我们的先导化合物 Sal-AMS 的体内功效
通过优化其药代动力学参数和效力,2)更深入地阐明
Mtb 的作用和耐药机制,3) 确定安全性和潜在的药物-药物
相互作用,4) 确定与其他结核病药物的相互作用(即协同作用)。我们将完成
该应用程序的总体目标是通过追求三个具体目标来实现的。在目标 1 中,我们将进行迭代
基于结构的药物化学程序,可同时优化药代动力学 (PK) 参数和
使用氟化、结构简化等方法组合的全细胞活性
核苷,以及在抑制剂中引入构象限制。在目标 2 中,我们将进行生化
和细胞研究,以评估酶抑制、靶标参与、细胞积累和全细胞
对 Mtb 以及耐药菌株的活性。产生耐药菌株,然后进行全基因组分析
测序将用于表征潜在的耐药机制并确定耐药性
频率。最后,将进行与各种一线和二线结核病药物的联合研究
评估协同效应的潜力。在目标 3 中,将对铁载体抑制剂进行体内评估以确定其作用
完整的药代动力学参数,目标是改善分布容积 (Vd)、内在
清除率(CL)和生物利用度(F)。我们将进行慢性毒性研究并评估化合物
针对一组检测(hERG、CYP 抑制、激酶组)以确保安全性和选择性。体内
将使用结核感染的小鼠模型进行功效研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Courtney C Aldrich其他文献
Going Viral.
病毒式传播。
- DOI:
10.1021/acsinfecdis.5b00098 - 发表时间:
2015 - 期刊:
- 影响因子:5.3
- 作者:
Kristen N Kindrachuk;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Antimetabolite poisoning of cofactor biosynthesis.
辅因子生物合成的抗代谢物中毒。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Leonardo K Martinelli;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Courtney C Aldrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Courtney C Aldrich', 18)}}的其他基金
Optimization of rifamycins to overcome intrinsic resistance of nontuberculous mycobacteria to improve treatment of NTM lung disease
优化利福霉素以克服非结核分枝杆菌的内在耐药性,改善 NTM 肺病的治疗
- 批准号:
10713137 - 财政年份:2023
- 资助金额:
$ 76.12万 - 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
10088387 - 财政年份:2020
- 资助金额:
$ 76.12万 - 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
9895968 - 财政年份:2020
- 资助金额:
$ 76.12万 - 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
- 批准号:
10543561 - 财政年份:2019
- 资助金额:
$ 76.12万 - 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
- 批准号:
10322125 - 财政年份:2019
- 资助金额:
$ 76.12万 - 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
- 批准号:
10368998 - 财政年份:2018
- 资助金额:
$ 76.12万 - 项目类别:
2017 Tuberculosis Drug Discovery and Development Gordon Research Conference and Gordon Research Seminar
2017结核病药物发现与开发戈登研究大会暨戈登研究研讨会
- 批准号:
9330545 - 财政年份:2017
- 资助金额:
$ 76.12万 - 项目类别:
A Fluorescence Displacement Assay for the Biotin Biosynthetic Enzyme BioA
生物素生物合成酶 BioA 的荧光置换测定
- 批准号:
8403185 - 财政年份:2012
- 资助金额:
$ 76.12万 - 项目类别:
A fluorescence displacement assay for BioA: An enzyme involved in biotin biosynth
BioA 的荧光置换测定:一种参与生物素生物合成的酶
- 批准号:
8262096 - 财政年份:2012
- 资助金额:
$ 76.12万 - 项目类别:
相似国自然基金
基因ytnP克隆表达及其对鲍曼不动杆菌的群体淬灭作用及机制研究
- 批准号:82360003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
抗碳青霉烯耐药鲍曼不动杆菌新型BfmR抑制剂的发现与活性研究
- 批准号:82304377
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗CRISPR蛋白抑制CRISPR-Cas系统介导鲍曼不动杆菌耐药和毒力演化机制研究
- 批准号:82373637
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鲍曼不动杆菌抵御黄色黏球菌捕食行为的分子机制与生物学意义
- 批准号:32370114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
鲍曼不动杆菌ATCC 17961 O-抗原、荚膜多糖 K15和K35 抗原的合成及生物活性研究
- 批准号:22377043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
FabI Inhibitors as Potent, Gut Microbiome-Sparing Antibiotics
FabI 抑制剂是有效的、保护肠道微生物群的抗生素
- 批准号:
10673319 - 财政年份:2023
- 资助金额:
$ 76.12万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 76.12万 - 项目类别:
Post-translational modification of GlyGly-Cterm Proteins
GlyGly-Cterm 蛋白的翻译后修饰
- 批准号:
10749396 - 财政年份:2023
- 资助金额:
$ 76.12万 - 项目类别:
Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
- 批准号:
10674406 - 财政年份:2023
- 资助金额:
$ 76.12万 - 项目类别: