Optimization of rifamycins to overcome intrinsic resistance of nontuberculous mycobacteria to improve treatment of NTM lung disease
优化利福霉素以克服非结核分枝杆菌的内在耐药性,改善 NTM 肺病的治疗
基本信息
- 批准号:10713137
- 负责人:
- 金额:$ 85.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-06 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:ADP ribosylationAccelerationAcuteAgingAntibioticsAutomobile DrivingBacteriaBacterial InfectionsBinding ProteinsBiological AssayCYP3A4 geneChemicalsChronicClinicalCombined AntibioticsComplementComplexCytochrome P450DNA-Directed RNA PolymeraseDataDevelopmentDiagnosticDiseaseDoseDrug InteractionsDrug KineticsEnsureEnvironmentEnzymesExhibitsFutureGenetic PolymorphismGenomicsGoalsImmunityImmunocompromised HostIn VitroIndividualIndustry StandardInfectionKnock-outKnowledgeLeadLearningLungLung diseasesMeasuresMetabolicMetabolismMixed Function OxygenasesMutationMycobacterium InfectionsMycobacterium abscessusMycobacterium avium ComplexMycobacterium chelonaeMycobacterium fortuitumMycobacterium kansasiiMycobacterium tuberculosisMycobacterium xenopiNaphthoquinonesNatural ResistanceNoduleOralOutcomePatientsPenetrationPharmaceutical ChemistryPharmaceutical PreparationsPharmacodynamicsPhosphorylasesPlasma ProteinsPlayPredispositionPropertyPublishingPulmonary PathologyPulmonary TuberculosisRecommendationRefractoryRegimenResistanceRifabutinRifampinRifamycinsRoleSiteSputumTestingTherapeuticTuberculosisanalogbacterial resistancebactericideclinically relevantcomorbiditycystic fibrosis patientsefficacy studyglobal healthimprovedin vivolung injurylung lesionmortalitymouse modelmutantmycobacterialnon-tuberculosis mycobacterianovelopportunistic pathogenoxidationpathogenpre-clinicalpreclinical developmentpreventprogramsresponsetreatment durationtuberculosis treatment
项目摘要
ABSTRACT
Non-tuberculosis mycobacteria (NTM) are ubiquitous environmental bacteria comprising rapid- and slow-
growing (RGM and SGM) opportunistic pathogens and causing tuberculosis (TB)-like lung disease in patients
with pre-existing lung conditions or compromised immunity. The most frequently encountered RGM and SGM
are Mycobacterium abscessus and the M. avium complex (MAC), respectively. Other clinically important NTM
include M. fortuitum and M. chelonae (RGM), and M. kansasii, M. genavense, M. xenopi, and M. simiae (SGM).
The often multiyear-long treatment consists of mostly repurposed and underperforming antibiotic combinations.
For many NTM diseases, there is no reliable curative regimen and mortality is high Our overarching goal is to
optimize rifamycins to overcome intrinsic resistance and improve treatment of NTM lung disease.
Rifampicin (RIF) is the pillar of TB therapy owing to its exquisite potency against the obligate pathogen M.
tuberculosis (Mtb), favorable pharmacokinetics and excellent penetration to the sites of disease. Although RIF
is recommended for the treatment of all SGM pulmonary diseases but M. simiae, its therapeutic utility has not
been established except for M. kansasii disease, in line with RIF being similarly potent against M. kansasii and
Mtb but poorly active against all other NTMs. Rifamycins do not achieve acceptable efficacy against most NTM
diseases due to intrinsic bacterial resistance not associated with polymorphisms or mutations in their target, the
RpoB subunit of the RNA polymerase. Rather, we have shown that M. abscessus undergoes intrabacterial
metabolism by rifamycin monooxygenase(s) (ROX) and ADP-ribosylase (Arr). Through systematic genomics
searches, we have identified these metabolic enzymes in all major RGM and several SGM. M. kansassii, in line
with its favorable response to rifampicin treatment, is Arr-negative. Rifamycin glycosylases and phosphorylases,
discovered in other bacteria, are potential additional candidates contributing to intrinsic resistance in some NTM.
We propose to characterize the species-specific rifamycin resistome of NTMs and exploit this knowledge to
overcome intrinsic resistance and rationally optimize the rifamycin class to improve the treatment of NTM lung
disease. Using ROX-resistant rifabutin (RBT) as chemical starting point in preliminary studies, we have blocked
ADP-ribosylation, resulting in a dramatic potency improvement against M. abscessus, similar to that of RIF
against Mtb (which does not harbor ROX or Arr). We will expand this approach to appropriate RGM and SGM
species as guided by resistome findings. To deliver a preclinical development candidate for the treatment of M.
abscessus and other Arr-positive NTM lung diseases, medicinal chemistry efforts will focus on reducing plasma
protein binding and removing drug-drug interactions due to cytochrome P450 induction, while maintaining
potency and favorable penetration into lung lesions. Through combination studies in vitro and in mouse models,
we will identify best partner drugs to deliver all-oral bactericidal rifamycin-based combinations that can improve
cure rates and shorten treatment duration.
抽象的
非结核分枝杆菌 (NTM) 是普遍存在的环境细菌,包括快速和慢速细菌
生长(RGM 和 SGM)机会性病原体并导致患者出现结核 (TB) 样肺部疾病
已有肺部疾病或免疫力受损。最常遇到的RGM和SGM
分别是脓肿分枝杆菌和鸟分枝杆菌复合体(MAC)。其他临床上重要的 NTM
包括偶然分枝杆菌和龟分枝杆菌 (RGM),以及堪萨斯分枝杆菌、格纳文分枝杆菌、蟾蜍分枝杆菌和猿分枝杆菌 (SGM)。
通常长达数年的治疗主要由重新调整用途且效果不佳的抗生素组合组成。
对于许多 NTM 疾病,没有可靠的治疗方案,死亡率很高。我们的首要目标是
优化利福霉素以克服内在耐药性并改善 NTM 肺病的治疗。
利福平 (RIF) 因其对专性病原体 M 的卓越功效而成为结核病治疗的支柱。
结核病 (Mtb),良好的药代动力学和对疾病部位的良好渗透性。虽然RIF
被推荐用于治疗所有 SGM 肺部疾病,但 M. simiae 除外,其治疗效用尚未见报道。
除堪萨斯分枝杆菌疾病外,RIF 也对堪萨斯分枝杆菌疾病具有同样的效力,并且
Mtb 但在对抗所有其他 NTM 时表现不佳。利福霉素对大多数 NTM 没有达到可接受的疗效
由于内在细菌耐药性而导致的疾病与目标的多态性或突变无关,
RNA 聚合酶的 RpoB 亚基。相反,我们已经证明脓肿分枝杆菌经历细菌内
利福霉素单加氧酶 (ROX) 和 ADP-核糖基酶 (Arr) 的代谢。通过系统基因组学
通过搜索,我们已经在所有主要 RGM 和几个 SGM 中识别出这些代谢酶。 M. kansassii,排队
由于对利福平治疗有良好反应,因此呈 Arr 阴性。利福霉素糖基化酶和磷酸化酶,
在其他细菌中发现的 NTM 是导致某些 NTM 内在耐药性的潜在其他候选者。
我们建议表征 NTM 的物种特异性利福霉素抗性组,并利用这些知识来
克服内在耐药合理优化利福霉素类别改善NTM肺治疗
疾病。在初步研究中,使用 ROX 抗性利福布丁 (RBT) 作为化学起点,我们已经阻断了
ADP-核糖基化,导致对抗脓肿分枝杆菌的效力显着提高,与 RIF 类似
对抗 Mtb(不包含 ROX 或 Arr)。我们将把这种方法扩展到适当的 RGM 和 SGM
以抗性组发现为指导的物种。提供治疗结核分枝杆菌的临床前开发候选药物。
脓肿和其他 Arr 阳性 NTM 肺部疾病,药物化学工作将集中于减少血浆
蛋白质结合并消除由于细胞色素 P450 诱导而导致的药物间相互作用,同时保持
效力和对肺部病变的有利渗透。通过体外和小鼠模型的组合研究,
我们将确定最佳的合作药物来提供基于利福霉素的全口服杀菌组合,可以改善
治愈率和缩短治疗时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Courtney C Aldrich其他文献
Going Viral.
病毒式传播。
- DOI:
10.1021/acsinfecdis.5b00098 - 发表时间:
2015 - 期刊:
- 影响因子:5.3
- 作者:
Kristen N Kindrachuk;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Antimetabolite poisoning of cofactor biosynthesis.
辅因子生物合成的抗代谢物中毒。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Leonardo K Martinelli;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Courtney C Aldrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Courtney C Aldrich', 18)}}的其他基金
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
10088387 - 财政年份:2020
- 资助金额:
$ 85.76万 - 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
9895968 - 财政年份:2020
- 资助金额:
$ 85.76万 - 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
- 批准号:
10543561 - 财政年份:2019
- 资助金额:
$ 85.76万 - 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
- 批准号:
10322125 - 财政年份:2019
- 资助金额:
$ 85.76万 - 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
- 批准号:
9890916 - 财政年份:2018
- 资助金额:
$ 85.76万 - 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
- 批准号:
10368998 - 财政年份:2018
- 资助金额:
$ 85.76万 - 项目类别:
2017 Tuberculosis Drug Discovery and Development Gordon Research Conference and Gordon Research Seminar
2017结核病药物发现与开发戈登研究大会暨戈登研究研讨会
- 批准号:
9330545 - 财政年份:2017
- 资助金额:
$ 85.76万 - 项目类别:
A Fluorescence Displacement Assay for the Biotin Biosynthetic Enzyme BioA
生物素生物合成酶 BioA 的荧光置换测定
- 批准号:
8403185 - 财政年份:2012
- 资助金额:
$ 85.76万 - 项目类别:
A fluorescence displacement assay for BioA: An enzyme involved in biotin biosynth
BioA 的荧光置换测定:一种参与生物素生物合成的酶
- 批准号:
8262096 - 财政年份:2012
- 资助金额:
$ 85.76万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting P21 positive senescent cells for alleviating TMJ degeneration
靶向 P21 阳性衰老细胞减轻 TMJ 变性
- 批准号:
10892710 - 财政年份:2023
- 资助金额:
$ 85.76万 - 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
- 批准号:
10723570 - 财政年份:2023
- 资助金额:
$ 85.76万 - 项目类别:
Pandemic preparedness for underserved persons in the US: Harnessing data from the RADx-UP consortium to assess public health tools for resource allocation
美国服务不足人群的流行病防范:利用 RADx-UP 联盟的数据评估用于资源分配的公共卫生工具
- 批准号:
10881319 - 财政年份:2023
- 资助金额:
$ 85.76万 - 项目类别:
Mechanisms underlying mustard gas-induced conjunctival injury and use of lipid mediators as medical countermeasures
芥子气引起的结膜损伤的机制以及脂质介质作为医疗对策的使用
- 批准号:
10882060 - 财政年份:2023
- 资助金额:
$ 85.76万 - 项目类别: