Mechanisms and Control of Thalamocortical Synchrony in Absence Epilepsy
失神癫痫丘脑皮质同步性的机制和控制
基本信息
- 批准号:10534110
- 负责人:
- 金额:$ 3.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Absence EpilepsyAreaAxonBehaviorBilateralBindingBrainCell NucleusCharacteristicsClinicalCommunicationConsciousCortical SynchronizationDependovirusDetectionDiagnosisDiseaseElectrodesElectroencephalographyEpilepsyEvolutionFiberFiber OpticsFire - disastersFoundationsFrequenciesGenerationsGeneticHalorhodopsinsHyperactivityImpairmentInstitutionIntuitionKnowledgeLaboratoriesMaintenanceMathematicsMeasuresMentorsModelingMusNeuronsOperative Surgical ProceduresOpsinOutputPatientsPatternPhasePopulationProbabilityRattusRodentRoleSCN8A geneSamplingSeizuresSignal TransductionSiliconSiteSomatosensory CortexStereotypingStructureSynapsesTarget PopulationsTechniquesTestingThalamic NucleiThalamic structureTimeTrainingTransfectionWorkassociation cortexdensitydesigner receptors exclusively activated by designer drugsimprovedindividualized medicineloss of functionmouse modelneuraloptical fiberoptogeneticsrecruitresponseskillstreatment strategy
项目摘要
Project Summary
The foundation of epilepsy diagnosis and patient-tailored treatment strategies relies on the detection of
stereotyped patterns in EEG recordings. These patterns require synchronous brain activity because electrical
signals are additive, and thus peaks and troughs cancel when misaligned. Despite this connection, the role of
neuronal synchrony in epilepsy mechanisms is surprisingly unclear. I am seeking to test for the presence and
origin of widespread neuronal synchronization in absence epilepsy and test if it has a causal role in absence
seizure generation. Absence seizures have an abrupt onset of bilaterally synchronous spike wave discharge
(SWD) EEG pattern across widespread areas of the brain. These seizures depend on both cortical and
thalamic networks but we do not know to what degree widespread cortical and thalamic synchronous firing
occurs, which brain structures are involved, or if there is any direct causal role of synchronization between
cortex and thalamus in absence seizure generation or maintenance. A fundamental principle for understanding
synchronization between network nodes is the following: the greater the similarity between the two nodes in
oscillation frequencies, the more readily they synchronize. My central hypothesis is that coordinated changes
in firing rates to a common frequency promotes corticothalamic synchronization, generating seizures. In aim 1 I
seek to measure and perturb firing rates to test whether firing rate convergences to a common rate directly
promote their synchronization. I will use multiple high density silicon probes to measure the population firing
rates of various target brain areas in the cortex and thalamus in the times leading up to and during absence
seizures. Subsequently, using chemogenetics, I will force a subset of neurons within a given target region to
fire at an incompatible firing frequency, which I predict will preclude its recruitment into this otherwise globally
synchronous firing during a seizure. In aim 2, I seek to test for a causal role of corticothalamic synchronization
in absence seizures. I will initiate seizures optogenetically with halorhodopsin induced rebound firing in
thalamocortical neurons as has been done previously, and then use closed loop activation of channelrhodopsin
expressed in the corresponding corticothalamic input axons. This will provide cortical input to the thalamus at
defined phases and frequencies relative to the SWDs, testing whether cortical synchronization and/or specific
relative frequencies with thalamus regulates seizure induction or duration. This work will for the first time
demonstrate both the widespread presence of synchronous neuronal firing and a causal role of corticothalamic
synchronization in absence seizure generation. This project will be performed under the guidance of two
mentors, Dr. Huguenard guiding training in experimental aspects and Dr. Ganguli guiding theoretical,
computational, and analysis techniques. With this combined approach along with extensive institution and
professional support at Stanford, I will develop a highly unique skillset with which to begin my own laboratory.
项目概要
癫痫诊断和针对患者的治疗策略的基础依赖于检测
脑电图记录中的刻板模式。这些模式需要同步的大脑活动,因为电
信号是相加的,因此当未对准时波峰和波谷会相互抵消。尽管存在这种联系,但角色
癫痫机制中的神经元同步性尚不清楚。我正在寻求测试是否存在并且
失神性癫痫中广泛神经元同步的起源并测试它是否在失神性癫痫中具有因果作用
癫痫发作的一代。失神发作具有突然发作的双侧同步尖波放电
(SWD)大脑广泛区域的脑电图模式。这些癫痫发作取决于皮质和
丘脑网络,但我们不知道皮质和丘脑同步放电的广泛程度
发生的情况,涉及哪些大脑结构,或者之间是否存在同步的直接因果作用
皮质和丘脑缺席时癫痫发作的产生或维持。理解的基本原则
网络节点之间的同步性如下:两个节点之间的相似度越大
振荡频率越高,它们就越容易同步。我的中心假设是协调变化
放电频率达到共同频率会促进皮质丘脑同步,从而产生癫痫发作。在目标 1 中我
寻求测量和扰动发射率以测试发射率是否直接收敛到共同速率
促进他们的同步。我将使用多个高密度硅探针来测量群体发射
缺席前和缺席期间皮质和丘脑各个目标脑区的比率
癫痫发作。随后,利用化学遗传学,我将迫使给定目标区域内的神经元子集
以不兼容的发射频率开火,我预测这将阻止其在全球范围内招募
癫痫发作期间同步放电。在目标 2 中,我试图测试皮质丘脑同步的因果作用
失神时癫痫发作。我将用盐视紫红质诱导的反弹放电以光遗传学方式启动癫痫发作
如之前所做的那样,丘脑皮层神经元,然后使用视紫红质通道的闭环激活
在相应的皮质丘脑输入轴突中表达。这将为丘脑提供皮质输入
定义相对于 SWD 的相位和频率,测试皮质同步和/或特定
丘脑的相对频率调节癫痫发作的诱发或持续时间。这部作品将首次
证明同步神经元放电的广泛存在和皮质丘脑的因果作用
同步失神发作的产生。该项目将在两位的指导下进行
导师Huguenard博士指导实验方面的训练,Ganguli博士指导理论,
计算和分析技术。通过这种综合方法以及广泛的机构和
在斯坦福大学的专业支持下,我将培养一套非常独特的技能来开始我自己的实验室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob M Hull其他文献
Reuniens thalamus recruits recurrent excitation in medial prefrontal cortex
Reuniens 丘脑在内侧前额叶皮质中募集周期性兴奋
- DOI:
10.1101/2024.05.31.596906 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:0
- 作者:
Gil Vantomme;Gabrielle Devienne;Jacob M Hull;J. Huguenard - 通讯作者:
J. Huguenard
Jacob M Hull的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob M Hull', 18)}}的其他基金
Mechanisms and Control of Thalamocortical Synchrony in Absence Epilepsy
失神癫痫丘脑皮质同步性的机制和控制
- 批准号:
10285488 - 财政年份:2022
- 资助金额:
$ 3.08万 - 项目类别:
相似国自然基金
多区域环境因素复杂暴露反应关系的空间联合估计方法研究
- 批准号:82373689
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
- 批准号:72373129
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Histopathologic interrogation of laminar microcircuits underlying cognition in frontotemporal dementia
额颞叶痴呆认知层状微电路的组织病理学研究
- 批准号:
10643786 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别:
The functions of dopamine signaling during sleep in memory
睡眠期间多巴胺信号在记忆中的作用
- 批准号:
10649893 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别:
Cortical Circuits Underlying Functional Recovery Following Stroke
中风后功能恢复的皮层回路
- 批准号:
10638607 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别:
Role of Microglial Fractalkine Signaling in Altered Dopaminergic Wiring in FASD
小胶质细胞分形蛋白信号传导在 FASD 多巴胺能线路改变中的作用
- 批准号:
10666254 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别:
VTA dopamine connectivity and functional responses to drugs of abuse
VTA 多巴胺连接和对滥用药物的功能反应
- 批准号:
10665966 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别: