Optogenetic dissection of inter-hemispheric frontal eye field circuits for eye movements

用于眼球运动的半球间额眼场回路的光遗传学解剖

基本信息

项目摘要

Abstract Visual-motor transformations and the generation of eye movements require processing that occurs in both brain hemispheres simultaneously. It is often assumed that the uninterrupted transfer of information from one hemisphere to the other and the resolution of competing movement plans are trivial problems. Yet this is unlikely the case because many visual-motor disorders have been linked to dysfunctions in inter-hemispheric communication, including strabismus, amblyopia, neglect, and epilepsy. Thus, inter-hemispheric communication is an understudied but central part of brain function. The ability to record from both hemispheres simultaneously and identify the exact neuronal connections between them has traditionally been difficult to accomplish. However, we recently developed optogenetic tools that reliably locate and label the cross-hemisphere inputs to a particular brain region. Coupled with modern techniques for recording neuronal populations, this approach promises to usher in a new era of primate-centric research that maps the brain circuitry needed to combine cortical activity in both hemispheres to generate an unambiguous percept and plan a specific action. The ability to directly link neuronal connections between brain hemispheres with their functional role in visual-motor behavior provides a powerful tool for investigating the longstanding hypothesis that activity for a specific movement vector in one hemisphere inhibits dissimilar movement activity in the other. We propose experiments that test this hypothesis by capitalizing on the well-characterized, precisely measurable, and naturalistic nature of eye movements and their cortical control by the frontal eye fields (FEF). In our first specific aim, we will optically identify and activate neurons in one FEF that project across the hemispheres while recording from recipient neurons in the other FEF to determine whether increased activity in one hemisphere decreases the activity of recipient neurons with dissimilar direction preferences in the other hemisphere. Our second specific aim will use a similar setup but inhibit the activity of cross-hemisphere cortical inputs to more thoroughly test the network architecture that governs inter-hemispheric communication. Collectively, the proposed experiments will: 1) identify cortical mechanisms for cross-hemispheric coordination during natural vision and eye movements, in preparation for future work on interhemispheric cortical communication; 2) establish a precise, reliable tool for identifying cortical inputs to greatly improve the mapping of cortical circuitry.
抽象的 视觉运动转换和眼球运动的产生需要处理 同时发生在两个大脑半球。人们通常认为不间断的 信息从一个半球转移到另一个半球以及解决竞争问题 运动计划是微不足道的问题。然而这种情况不太可能发生,因为许多视觉运动 疾病与半球间沟通功能障碍有关,包括 斜视、弱视、忽视和癫痫。因此,半球间的交流是一种 尚未得到充分研究,但却是大脑功能的核心部分。 能够同时记录两个半球并识别准确的神经元 传统上,它们之间的联系很难实现。然而,我们最近 开发了光遗传学工具,可以可靠地定位和标记跨半球输入 特定的大脑区域。结合记录神经元群的现代技术,这 该方法有望开创以灵长类动物为中心的研究新时代,绘制大脑图谱 需要结合两个半球的皮质活动以产生明确的电路 感知并计划具体的行动。 将大脑半球之间的神经元连接与其功能直接联系起来的能力 视觉运动行为中的作用为研究长期存在的视觉运动行为提供了强大的工具 假设一个半球特定运动向量的活动会抑制不同的运动向量 另一方的运动活动。我们提出通过资本化来检验这一假设的实验 关于眼球运动的特征明确、可精确测量和自然的本质 他们的皮质由额叶眼场(FEF)控制。在我们的第一个具体目标中,我们将光学地 识别并激活一个 FEF 中在记录时投射到半球的神经元 来自另一个 FEF 中的受体神经元,以确定其中一个 FEF 中的活动是否增加 半球降低了具有不同方向偏好的受体神经元的活动 另一个半球。我们的第二个具体目标将使用类似的设置,但抑制 跨半球皮质输入,以更彻底地测试控制的网络架构 半球间的通讯。总的来说,拟议的实验将:1)识别皮质 自然视觉和眼球运动过程中的跨半球协调机制 为未来大脑半球间皮质通讯的工作做准备; 2)建立一个精确的、 用于识别皮质输入的可靠工具,可大大改善皮质电路的映射。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Patrick Mayo其他文献

Joseph Patrick Mayo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Patrick Mayo', 18)}}的其他基金

Optogenetic dissection of inter-hemispheric frontal eye field circuits for eye movements
用于眼球运动的半球间额眼场回路的光遗传学解剖
  • 批准号:
    10707079
  • 财政年份:
    2022
  • 资助金额:
    $ 24.92万
  • 项目类别:
Neuronal Dynamics of Visual Attention and Eye Movements
视觉注意力和眼球运动的神经元动力学
  • 批准号:
    8392777
  • 财政年份:
    2012
  • 资助金额:
    $ 24.92万
  • 项目类别:
Neuronal Dynamics of Visual Attention and Eye Movements
视觉注意力和眼球运动的神经元动力学
  • 批准号:
    8536135
  • 财政年份:
    2012
  • 资助金额:
    $ 24.92万
  • 项目类别:
Neuronal Dynamics of Visual Attention and Eye Movements
视觉注意力和眼球运动的神经元动力学
  • 批准号:
    8720776
  • 财政年份:
    2012
  • 资助金额:
    $ 24.92万
  • 项目类别:

相似海外基金

Predictive Markers for Longitudinal TMJ Integrity
纵向颞下颌关节完整性的预测标记
  • 批准号:
    10648171
  • 财政年份:
    2023
  • 资助金额:
    $ 24.92万
  • 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 24.92万
  • 项目类别:
Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
  • 批准号:
    10827155
  • 财政年份:
    2023
  • 资助金额:
    $ 24.92万
  • 项目类别:
Simulating Ancestrally Unbiased Tumor Evolution To Interrogate Drug Resistance
模拟祖先无偏见的肿瘤进化来询问耐药性
  • 批准号:
    10687776
  • 财政年份:
    2023
  • 资助金额:
    $ 24.92万
  • 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 24.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了