Development of Targeted Damaging Agents for the Treatment of Drug-Resistant Gliomas
开发治疗耐药神经胶质瘤的靶向损伤剂
基本信息
- 批准号:10481979
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAdenineAlkylating AgentsAlkylationApoptosisBase PairingBiological MarkersCell LineCellsChemistryClinicalCollectionColon CarcinomaDNADNA RepairDNA biosynthesisDNA lesionDNA-Directed DNA PolymeraseDataDefectDevelopmentDoseDrug KineticsDrug resistanceExcisionExhibitsFutile CyclingGenomeGlioblastomaGliomaHydrogenHypermethylationIsocitrate DehydrogenaseLaboratoriesLeadLesionLomustineMalignant NeoplasmsMaximum Tolerated DoseMediatingMethyltransferaseMismatch RepairModelingMusMutationNeuraxisNon-Small-Cell Lung CarcinomaOncologyPathway interactionsPatientsPenetrancePenetrationPhasePhase I Clinical TrialsPlasmaPositioning AttributePropertyRecurrenceRefractoryResistanceRodentSafetySeriesSmall Business Innovation Research GrantSynthesis ChemistryTestingTherapeuticTherapeutic IndexThymineTimeToxicologyTranslational ResearchTumor-DerivedUniversitiesXenograft Modelanalogbasedemethylationepigenetic silencingglioma cell lineimprovedin vitro activityin vivoinhibitorlead optimizationlung small cell carcinomameetingsmouse modelnovelpreclinical developmentpromoterrepairedresistance mechanismsmall moleculesuccesstemozolomidetumortumor xenograft
项目摘要
PROJECT SUMMARY
Loss of O6-methylguanine methyltransferase (MGMT) expression is common in cancers and confers sensitivity
to DNA alkylators, such as temozolomide (TMZ). Epigenetic silencing of MGMT via promoter hypermethylation
is found in ~50% of glioblastomas (GBMs), and in most lower grade gliomas with isocitrate dehydrogenase-1/2
(IDH1/2) mutations. MGMT is also silenced in other cancers, including up to 40% of colon cancers, 35% of small
cell lung cancers, and 25% of non-small cell lung cancers. In cells that lack MGMT expression (termed MGMT-
cells), TMZ-derived O6-methylguanine (O6MeG) lesions mispair with thymine, during DNA replication, due to
altered hydrogen base pairing, leading to activation of the mismatch repair pathway (MMR). MMR attempts to
repair these lesions by resecting the newly synthesized strand, but thymine once again is inserted opposite of
O6MeG. This reinsertion again triggers MMR, leading to iterative “futile cycles” of DNA repair and ultimately
apoptosis. Clinically, MGMT promoter demethylation is rare, whereas MMR mutations occur frequently as a
dominant mechanism of resistance to TMZ in many tumor types. Because MGMT silencing is found in many
cancers, DNA lesions that overcome the MMR resistance (while still being resolvable by MGMT, so as to
maintain a therapeutic index (TI)) will have a broad impact. Furthermore, as this biomarker persists even in the
treatment-refractory setting (i.e., in the context of MMR defects), we argue that loss of MGMT expression has
not been fully exploited for therapeutic gain. Based on the findings presented above, we seek to develop a new
class of agents discovered in the laboratory of Drs. Ranjit Bindra and Seth Herzon that generate O6MeG lesions
that are susceptible to MGMT removal (“MGMT dependent”) in healthy cells, but which can overcome MMR
resistance (“MMR independent”). To this end, Drs. Bindra and Herzon have co-founded KL50 Therapeutics, LLC,
and their studies lead to the identification of KL50, a novel alkylation agent that is more active against MMR- cell
lines than MMR+ cell lines, while retaining MGMT resolvability. This molecule demonstrates exquisite sensitivity
in MGMT-deficient cells independent of MMR status, with negligible activity in MGMT-proficient cells, and has a
TI approximately 30 times greater than TMZ. Building on these achievements, in this fast-track SBIR project, we
propose to conduct lead optimization to improve central nervous system (CNS) penetration, identify a collection
of small molecules with in vivo efficacy in mouse models of high-grade gliomas (HGG), and further develop these
compounds for use in a Phase 1 clinical trial. These MGMT dependent–MMR independent alkylating agents are
anticipated to possess the positive attributes of TMZ, while circumventing the unavoidable MMR loss mediated
resistance mechanism and, thereby, have a major impact on the way we treat GBMs and other tumors lacking
MGMT. These molecules could represent a paradigm shift in oncology by dramatically improving their
therapeutic index. If successful, our approach will significantly increase the safety and efficacy of DNA alkylators
and will expand their use for a broader range of recurrent gliomas and many other cancers.
项目概要
O6-甲基鸟嘌呤甲基转移酶 (MGMT) 表达缺失在癌症中很常见,并赋予敏感性
DNA 烷基化剂,例如替莫唑胺 (TMZ) 通过启动子高甲基化实现 MGMT 的表观遗传沉默。
存在于约 50% 的胶质母细胞瘤 (GBM) 中,并且存在于大多数具有异柠檬酸脱氢酶的低级别胶质瘤中-1/2
(IDH1/2) 突变在其他癌症中也被沉默,包括高达 40% 的结肠癌、35% 的小肠癌。
细胞肺癌和 25% 的非小细胞肺癌细胞中缺乏 MGMT 表达(称为 MGMT-)。
细胞),TMZ 衍生的 O6-甲基鸟嘌呤 (O6MeG) 损伤在 DNA 复制过程中与胸腺嘧啶错配,原因是
改变氢碱基配对,导致错配修复途径(MMR)的激活。
通过切除新合成的链来修复这些损伤,但胸腺嘧啶再次插入到与
O6MeG 的重新插入再次触发 MMR,导致 DNA 修复的迭代“无效循环”。
临床上,MGMT 启动子去甲基化很少见,而 MMR 突变则频繁发生。
许多主要肿瘤类型对 TMZ 的耐药机制是因为在许多肿瘤类型中都发现了 MGMT 沉默。
癌症、克服 MMR 耐药性的 DNA 损伤(同时仍可通过 MGMT 解决,以便
维持治疗指数(TI))将产生广泛的影响,因为这种生物标志物甚至在体内也持续存在。
治疗难治性环境(即,在 MMR 缺陷的情况下),我们认为 MGMT 表达的丧失
尚未充分利用来获得治疗效果。基于上述发现,我们寻求开发一种新的方法。
Ranjit Bindra 和 Seth Herzon 博士的实验室发现的一类可产生 O6MeG 损伤的药物
在健康细胞中容易被 MGMT 去除(“MGMT 依赖性”),但可以克服 MMR
为此,Bindra 博士和 Herzon 共同创立了 KL50 Therapeutics, LLC,
他们的研究导致了 KL50 的鉴定,这是一种新型烷化剂,对 MMR-细胞更具活性
细胞系优于 MMR+ 细胞系,同时保留 MGMT 分辨率。该分子表现出出色的灵敏度。
在 MGMT 缺陷细胞中,与 MMR 状态无关,在 MGMT 熟练细胞中活性可忽略不计,并且具有
TI 大约是 TMZ 的 30 倍,在这些成就的基础上,在这个快速 SBIR 项目中,我们
提议进行先导化合物优化以提高中枢神经系统(CNS)渗透率,确定集合
在高级神经胶质瘤(HGG)小鼠模型中具有体内功效的小分子,并进一步开发这些
这些化合物用于 1 期临床试验。
预计具有 TMZ 的积极属性,同时避免不可避免的 MMR 损失介导
耐药机制,从而对我们治疗 GBM 和其他缺乏耐药性的肿瘤的方式产生重大影响。
MGMT。这些分子可以通过显着改善它们来代表肿瘤学的范式转变。
如果成功,我们的方法将显着提高 DNA 烷化剂的安全性和有效性。
并将扩大其用于更广泛的复发性神经胶质瘤和许多其他癌症的用途。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerald Francis Vovis其他文献
Gerald Francis Vovis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerald Francis Vovis', 18)}}的其他基金
Development of Targeted Damaging Agents for the Treatment of Drug-Resistant Gliomas
开发治疗耐药神经胶质瘤的靶向损伤剂
- 批准号:
10812561 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Beta-Globin Gene Correction Using Peptide Nucleic Acids for the Treatment of Sick
使用肽核酸校正β-珠蛋白基因来治疗疾病
- 批准号:
7997382 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Targeted CCR5 Gene Inactivation Using Peptide Nucleic Acids
使用肽核酸进行靶向 CCR5 基因失活
- 批准号:
7494358 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
N6-腺嘌呤甲基化修饰调控玉米抗旱性的分子机制研究
- 批准号:32370633
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于新型脂质多聚复合物的腺嘌呤碱基编辑系统对高草酸尿症的基因治疗研究
- 批准号:52373134
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
烟酰胺腺嘌呤二核苷酸从头合成新途径的发现与解析
- 批准号:32370058
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新一代精准、安全、适用范围更广的腺嘌呤碱基编辑器的开发及其在基因治疗中的应用研究
- 批准号:32371535
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超亲和识别体的人工进化与全基因DNA/RNA腺嘌呤甲基化测序新方法
- 批准号:22234008
- 批准年份:2022
- 资助金额:280 万元
- 项目类别:重点项目
相似海外基金
The role of histidine phosphorylation in the DNA alkylation damage response
组氨酸磷酸化在 DNA 烷基化损伤反应中的作用
- 批准号:
10581923 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Characterizing the role of RNF25 in repair of DNA alkylation in blood cancers
表征 RNF25 在血癌 DNA 烷基化修复中的作用
- 批准号:
10438061 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Development of Targeted Damaging Agents for the Treatment of Drug-Resistant Gliomas
开发治疗耐药神经胶质瘤的靶向损伤剂
- 批准号:
10812561 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Characterizing the role of RNF25 in repair of DNA alkylation in blood cancers
表征 RNF25 在血癌 DNA 烷基化修复中的作用
- 批准号:
10580070 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
TC-NER IN THE REPAIR AND MUTAGENESIS OF DNA ALKYLATION DAMAGE
TC-NER 在 DNA 烷基化损伤的修复和诱变中的作用
- 批准号:
9508890 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别: