Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
基本信息
- 批准号:10472046
- 负责人:
- 金额:$ 41.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationActomyosinAddressAffectAnteriorArchitectureBiochemicalBiological ModelsBiomechanicsBiophysical ProcessBiophysicsCell ShapeCell modelCellsCellular biologyComplementComplexCongenital AbnormalityDefectDevelopmental BiologyDevelopmental ProcessDorsalEmbryoEmbryonic DevelopmentEnvironmentEpithelialExtracellular MatrixFormulationFoundationsFour-dimensionalGoalsHealthImageImage AnalysisIndividualKnowledgeLasersLeadLeftMathematicsMeasurementMechanicsMethodsMissionModelingMorphogenesisMotionMovementOpticsOrganOrgan ModelOrganogenesisOutputPatternPhenotypePhysicsPlayPreventionPublic HealthResearchResolutionRodRoleShapesSignal TransductionSignaling MoleculeStructural Congenital AnomaliesStructureSurfaceTestingThree-dimensional analysisTimeTissuesUnited States National Institutes of HealthVelocimetriesVesicleWorkZebrafishbasecell motilityconvergent extensiondisabilityin vivo imagingmalformationmathematical modelmechanical forcemechanical propertiesmorphogensmultidisciplinarynotochordnovelparticlepredictive modelingpreventprogramssimulationthree dimensional structure
项目摘要
PROJECT SUMMARY/ABSTRACT
Defects in programmed cell shape changes during embryonic development can disrupt organ morphogenesis
and cause structural birth defects. There are fundamental gaps in our understanding of how cells change their
shape during organ formation. While the biochemical signals and morphogen gradients that help govern
organogenesis are well-studied, evidence is growing that robust control of organ form and function often also
depends on multiple mechanical mechanisms that remain poorly understood. Thus, there is a critical need to
tease apart how multiple mechanisms – including tissue-scale dynamic forces and cell-autonomous
contractile forces – work together to generate “mechanical gradients” that program cell and organ
shape during organ formation. A challenge is that mechanical perturbations that affect the entire embryo
often result in the same global phenotype, making it difficult to pinpoint the role of each mechanism. Our long-
term goal is to develop a combined cell biology and modeling toolkit that allows us to predict cell-scale
phenotypes and appropriate perturbations that can be used to distinguish between multiple mechanical
mechanisms. This project uses Kupffer’s vesicle (KV), a transient epithelial organ that establishes left-right
asymmetry in the zebrafish embryo, as a model system. No upstream biochemical signaling gradients have
been identified that regulate KV cell shapes as required for left-right patterning, but multiple mechanical
mechanisms have been implicated. Preliminary results – from (4D = 3D + time) experimental perturbations and
measurements of single KV cell shapes, and novel mathematical models that simulate interacting 3D tissue
structures while retaining cell-scale resolution – lead us to formulate our central hypothesis that cell shape
changes critical for KV organogenesis result from mechanical gradients generated by interactions between the
KV and surrounding tissue structures as well as cell-autonomous contractile forces from inside KV. The goal of
Aim 1 is to determine how interactions between KV and notochord impact cell shape changes. 4D modeling
predictions for cell shapes and cell movement combined with live in vivo imaging and localized laser ablations
will determine how asymmetric forces generated by the rod-like notochord impact KV cell shape changes
during organogenesis. The goal of Aim 2 is to understand mechanisms by which actomyosin contractility in
surrounding tailbud cells and inside KV generate KV cell shape changes. Novel mathematical models will
predict how localized optical perturbations to tailbud mechanics, as well as perturbations to volume and cell-
autonomous contractility in cells inside the KV, affect KV organ shape. Key outputs include a modeling toolkit
for high-throughput simulations of dynamic interactions between complex 3D tissue structures complemented
by a cell biology toolkit that tests model predictions with spatially and temporally modulated activation of
biomechanical and biochemical signaling molecules. These results will pinpoint mechanical mechanisms that
regulate organogenesis, and may ultimately aid in the prediction or prevention of birth defects.
项目概要/摘要
胚胎发育过程中程序性细胞形状变化的缺陷可能会破坏器官形态发生
并导致结构性先天缺陷,我们对细胞如何改变其自身的理解存在根本性的差距。
器官形成过程中的形状,而生化信号和形态发生素梯度则有助于控制。
器官发生已得到充分研究,越来越多的证据表明对器官形态和功能的强有力控制也经常发生
依赖于仍知之甚少的多种机械机制,因此,迫切需要了解。
梳理多种机制——包括组织尺度的动力和细胞自主
收缩力——共同产生“机械梯度”,对细胞和器官进行编程
器官形成过程中形状的一个挑战是影响整个胚胎的机械扰动。
通常会导致相同的全局表型,因此很难确定每种机制的作用。
术语目标是开发一个组合的细胞生物学和建模工具包,使我们能够预测细胞规模
表型和适当的扰动可用于区分多种机械
该项目使用库普弗囊泡 (KV),这是一种建立左右方向的瞬时上皮器官。
作为模型系统,斑马鱼胚胎中没有上游生化信号梯度。
已确定可根据左右图案的需要调节 KV 单元形状,但多个机械
初步结果来自(4D = 3D + 时间)实验扰动和
相互作用的单个 KV 细胞形状的测量以及模拟 3D 组织的新颖数学模型
结构,同时保留细胞尺度分辨率——引导我们制定我们的中心假设,即细胞形状
对 KV 器官发生至关重要的变化是由 KV 之间相互作用产生的机械梯度引起的
KV 和周围组织结构以及来自 KV 内部的细胞自主收缩力。
目标 1 是确定 KV 和脊索之间的相互作用如何影响细胞形状的变化。
通过结合活体成像和局部激光烧蚀来预测细胞形状和细胞运动
将确定杆状脊索产生的不对称力如何影响 KV 细胞形状变化
目标 2 的目标是了解肌动球蛋白收缩的机制。
周围的尾芽细胞和内部的KV会产生KV细胞形状的变化。
预测局部光学扰动对尾芽力学的影响,以及对体积和细胞的扰动
KV 内细胞的自主收缩性会影响 KV 器官的形状。关键输出包括建模工具包。
用于高通量模拟复杂 3D 组织结构之间动态相互作用的补充
通过细胞生物学工具包,通过空间和时间调制的激活来测试模型预测
这些结果将查明生物力学和生化信号分子的机械机制。
调节器官发生,并可能最终有助于预测或预防出生缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY D AMACK其他文献
JEFFREY D AMACK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY D AMACK', 18)}}的其他基金
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10121167 - 财政年份:2020
- 资助金额:
$ 41.27万 - 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10271304 - 财政年份:2020
- 资助金额:
$ 41.27万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
7851355 - 财政年份:2009
- 资助金额:
$ 41.27万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
7634059 - 财政年份:2009
- 资助金额:
$ 41.27万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
7851355 - 财政年份:2009
- 资助金额:
$ 41.27万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
8429442 - 财政年份:2009
- 资助金额:
$ 41.27万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
8150627 - 财政年份:2009
- 资助金额:
$ 41.27万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6738235 - 财政年份:2004
- 资助金额:
$ 41.27万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6850700 - 财政年份:2004
- 资助金额:
$ 41.27万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6992672 - 财政年份:2004
- 资助金额:
$ 41.27万 - 项目类别:
相似国自然基金
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Molecular Basis of Nasal Pit Morphogenesis and its Role in Upper Lip Formation
鼻凹形态发生的分子基础及其在上唇形成中的作用
- 批准号:
10824138 - 财政年份:2023
- 资助金额:
$ 41.27万 - 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10121167 - 财政年份:2020
- 资助金额:
$ 41.27万 - 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10271304 - 财政年份:2020
- 资助金额:
$ 41.27万 - 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
- 批准号:
10418728 - 财政年份:2019
- 资助金额:
$ 41.27万 - 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
- 批准号:
9981736 - 财政年份:2019
- 资助金额:
$ 41.27万 - 项目类别: