The Molecular Basis of Nasal Pit Morphogenesis and its Role in Upper Lip Formation

鼻凹形态发生的分子基础及其在上唇形成中的作用

基本信息

项目摘要

Project Summary/Abstract While cleft lip, with or without cleft palate, is one of the most common craniofacial birth defects, the molecular and cellular etiology of the phenotype is incompletely understood, and the fundamental morphogenesis that underlies upper lip formation remains largely mysterious. This is in part due to a complex three-dimensional topology of the developing midface over a series of several days during mid-gestation. At the onset of lip development, the frontonasal process (FNP) cranial ectoderm undergoes substantial morphological change starting with bilateral thickening and formation of the epithelial nasal placodes, which undergo invagination to form nasal pits, separating the medial nasal processes (MNP) from the lateral nasal processes (LNP). Fusion of the MNP and the LNP encloses the nasal canals and initiates the formation of the upper lip, which also involves fusion of the MNP and maxillary process (MXP). While some studies have focused on the regulation of these final fusion steps, much less attention has been paid to the cellular drivers and molecular regulators of the significant preceding morphologic changes during nasal pit formation as it contributes to proper lip formation. Previous reports together with preliminary data presented here, demonstrate that loss of TGFβ Receptor I (Alk5) within the craniofacial ectoderm leads to cleft lip. TGFβ signaling via TGFβRI can activate both canonical and/or noncanonical downstream signaling pathways in a context specific manner, leading to transcriptional and/or cytoskeletal changes critical in many tissue morphogenesis events. Disruption of TGFβRI or actomyosin contractility through the compound loss of the two major mammalian embryonic non-muscle myosins, NMIIA and NMIIB, results in cleft lip and defects in early nasal pit morphogenesis. This project will test the central hypothesis that nasal pit morphogenesis, driven in part by tissue bending driven by actomyosin contractility, causes conformational changes that bring the MNP/LNP/MXP in proximity for fusion and establish midface structure, and that signaling via TGFβRI is a key regulator of this process. Aim 1 will establish the cellular dynamics driving nasal pit morphogenesis as it contributes to lip formation. Aim 2 will determine how TGFβ signaling via TGFβRI drives nasal pit morphogenesis and lip formation. This study will be a key step in understanding how upper lip morphogenesis occurs, and the mechanisms underlying cleft lip.
项目概要/摘要 虽然唇裂(伴或不伴腭裂)是最常见的颅面出生缺陷之一,但分子生物学 该表型的细胞病因学尚不完全清楚,并且其基本形态发生 上唇形成的基础在很大程度上仍然是个谜,部分原因是复杂的三维空间。 中面部的拓扑结构在妊娠中期的几天内发育。 发育过程中,额鼻突(FNP)发生显着的形态变化 从双侧鼻上皮基板增厚和形成开始,鼻基板发生内陷 鼻腔形成鼻凹,将内侧鼻突(MNP)与外侧鼻突(LNP)分开。 MNP 和 LNP 包围鼻道并启动上唇的形成,这也涉及 MNP 和上颌突 (MXP) 的融合,而一些研究重点关注这些的调节。 在最后的融合步骤中,对细胞驱动器和分子调节器的关注要少得多 在鼻凹形成过程中发生显着的先前形态变化,因为它有助于正确的唇部形成。 之前的报告以及此处提供的初步数据表明,TGFβ 受体 I (Alk5) 的丢失 颅面外胚层内通过 TGFβRI 导致唇裂的 TGFβ 信号传导可以激活规范和/或。 以上下文特定的方式非规范下游信号传导途径,导致转录和/或 细胞骨架的变化在许多组织形态发生事件中至关重要 TGFβRI 或肌动球蛋白的破坏。 通过两种主要哺乳动物胚胎非肌肉肌球蛋白 NMIIA 和 NMIIA 的复合损失来抑制收缩力 NMIIB,导致唇裂和早期鼻凹形态发生缺陷。 该项目将测试中心假设,即鼻凹形态发生部分是由组织弯曲驱动的 通过肌动球蛋白收缩性,引起构象变化,使 MNP/LNP/MXP 接近融合 并建立中面部结构,而通过 TGFβRI 的信号传导是该过程的关键调节因子。 建立驱动鼻凹形态发生的细胞动力学,因为它有助于唇部形成。 这项研究将确定 TGFβ 信号如何通过 TGFβRI 驱动鼻凹形态发生和唇部形成。 这是了解上唇形态发生如何发生以及唇裂机制的关键一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luke David Lucido其他文献

Luke David Lucido的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
  • 批准号:
    82302368
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
  • 批准号:
    82303710
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
  • 批准号:
    82373004
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
典型草原不同退化类型雪水消融过程水分转换效率研究
  • 批准号:
    32360295
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
  • 批准号:
    82302331
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
  • 批准号:
    10472046
  • 财政年份:
    2020
  • 资助金额:
    $ 4.56万
  • 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
  • 批准号:
    10121167
  • 财政年份:
    2020
  • 资助金额:
    $ 4.56万
  • 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
  • 批准号:
    10472046
  • 财政年份:
    2020
  • 资助金额:
    $ 4.56万
  • 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
  • 批准号:
    10271304
  • 财政年份:
    2020
  • 资助金额:
    $ 4.56万
  • 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
  • 批准号:
    10418728
  • 财政年份:
    2019
  • 资助金额:
    $ 4.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了