SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
基本信息
- 批准号:10458527
- 负责人:
- 金额:$ 22.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAlgorithmsBlood PressureChronic Obstructive Pulmonary DiseaseClinicalClinical DataComputer Vision SystemsCongestive Heart FailureDataData SetDecision MakingDiagnosisDropsDyspneaElectronic Health RecordEngineeringEnsureEvaluationEventGoalsHealthHealthcareHospitalizationHospitalsImageInfrastructureLearningLinear ModelsMachine LearningMethodsModelingMoralityOutcomePathologic ProcessesPatient RightsPatient-Focused OutcomesPatientsPerformancePhysiciansPneumoniaPoliciesPositioning AttributeProtocols documentationPsychological reinforcementQuality of CareResearchResearch PersonnelRespiratory FailureRewardsRight to TreatmentsSample SizeSamplingSelection for TreatmentsSeriesShortness of BreathSignal TransductionSigns and SymptomsSocietiesStreamSymptomsSystemTechniquesTest ResultTheoretical StudiesTimeTrainingVariantWorkbaseclinical careclinical databaseclinical decision supportclinical practiceclinically relevantconvolutional neural networkdeep learningdeep neural networkdesignhealth datahigh dimensionalityimprovedinnovationinterdisciplinary collaborationlearning algorithmlearning strategymortalitynetwork architecturenoveloptimal treatmentspatient responsepatient stratificationprospectivesuccesssupervised learningsupport toolstheoriestooltreatment strategy
项目摘要
The ability to rapidly match the right patients to the right treatments at the right time is critical to ensuring patients
receive high quality care. The vast majority of machine learning applications in healthcare focus on diagnosing or
stratifying patients for a particular outcome. In contrast, reinforcement learning (RL) aims to learn how clinical states
(i.e., sets of signs, symptoms, and test results) respond to specific sequences of treatments, with the goal of
optimizing clinical outcomes. RL does not aim to diagnose, but infers diagnosis based on a patient's response to
specific treatments--in many ways mimicking how clinicians operate in practice. This proposal will develop a novel
clinician-in-the-loop reinforcement learning (RL) framework that analyzes electronic health record (EHR) clinical
time-series data to support physician decision making, iteratively providing physicians the estimated outcome of
potential treatment strategies. Our topic of focus for this work is the evaluation and treatment of patients hospitalized
with acute dyspnea (shortness of breath) and signs of impending respiratory failure. Acute dyspnea is an ideal
condition for an RL approach, since it can be due to three overlapping conditions: congestive heart failure, chronic
obstructive pulmonary disease and pneumonia. Determining optimal treatment for these patients is clinically difficult,
as a patient's presentation is frequently ambiguous, rapidly changing, and often due to multiple causes.
Inappropriate treatment may occur in up to a third of patients leading to increased mortality. While developing this
RL framework, we will also develop methods to learn more useful representations of high-dimensional clinical
time-series data to improve the efficiency of RL model training. In addition, given the challenges of working with
observational health data, we will develop new methods for evaluation of learned policies and develop new theory to
better understand the limitations of RL using observational data. The project has four aims: 1) create a shareable,
de-identified EHR time-series dataset of 35,000 patients with acute dyspnea, 2) develop techniques for exploiting
invariances In tasks involving clinical time-series data to improve the efficiency of RL model training, 3) develop and
evaluate an RL-based framework for learning optimal treatment policies for acute dyspnea, and 4) prospectively
validate the learned treatment model. This research will result in new techniques for learning representations from
time-series data and will study both the theoretical and practical limitations of RL using observational clinical data,
leading to key advancements in ML and RL for clinical care. The tools developed for clinical decision support in this
proposal have the potential for high impact because of their ability to generalize beyond the problem studied here to
other conditions, laying the groundwork for clinical systems that directly impact society by aiding in the timely and
appropriate treatment of patients.
能够在正确的时间快速将正确的患者与正确的治疗相匹配对于确保患者获得治疗至关重要
接受高质量的护理。医疗保健领域的绝大多数机器学习应用都专注于诊断或
针对特定结果对患者进行分层。相比之下,强化学习(RL)旨在了解临床状态如何
(即一组体征、症状和测试结果)对特定的治疗顺序做出反应,目的是
优化临床结果。 RL 的目的不是诊断,而是根据患者的反应来推断诊断
具体的治疗方法——在很多方面模仿临床医生在实践中的操作方式。该提案将开发一种新颖的
临床医生循环强化学习 (RL) 框架,用于分析电子健康记录 (EHR) 临床
时间序列数据支持医生决策,迭代地为医生提供估计结果
潜在的治疗策略。我们这项工作的重点主题是住院患者的评估和治疗
伴有急性呼吸困难(呼吸短促)和即将发生呼吸衰竭的迹象。急性呼吸困难是理想的
RL 方法的条件,因为它可能是由于三种重叠的条件造成的:充血性心力衰竭、慢性
阻塞性肺病和肺炎。确定这些患者的最佳治疗在临床上很困难,
因为患者的表现常常含糊不清、变化迅速,而且往往是由多种原因造成的。
多达三分之一的患者可能会出现不适当的治疗,导致死亡率增加。在开发这个
强化学习框架,我们还将开发方法来学习更多有用的高维临床表征
时间序列数据来提高RL模型训练的效率。此外,考虑到与合作伙伴合作的挑战
观察健康数据,我们将开发新方法来评估所学政策并开发新理论
使用观察数据更好地理解强化学习的局限性。该项目有四个目标:1)创建一个可共享的、
35,000 名急性呼吸困难患者的去识别 EHR 时间序列数据集,2) 开发利用技术
不变性 在涉及临床时间序列数据的任务中,提高 RL 模型训练的效率,3)开发和
评估基于强化学习的框架,用于学习急性呼吸困难的最佳治疗策略,以及 4) 前瞻性
验证学习到的治疗模型。这项研究将产生学习表征的新技术
时间序列数据,并将使用观察性临床数据研究强化学习的理论和实践局限性,
导致临床护理的机器学习和强化学习取得重大进展。为临床决策支持而开发的工具
提案具有产生巨大影响的潜力,因为它们能够推广到此处研究的问题之外
其他条件,通过及时和有效地帮助,为直接影响社会的临床系统奠定基础
对患者进行适当的治疗。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diagnosing bias in data-driven algorithms for healthcare.
诊断医疗保健数据驱动算法中的偏差。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:82.9
- 作者:Wiens, Jenna;Price 2nd, W Nicholson;Sjoding, Michael W
- 通讯作者:Sjoding, Michael W
Combining chest X-rays and electronic health record (EHR) data using machine learning to diagnose acute respiratory failure.
使用机器学习结合胸部 X 光检查和电子健康记录 (EHR) 数据来诊断急性呼吸衰竭。
- DOI:
- 发表时间:2022-05-11
- 期刊:
- 影响因子:0
- 作者:Jabbour, Sarah;Fouhey, David;Kazerooni, Ella;Wiens, Jenna;Sjoding, Michael W
- 通讯作者:Sjoding, Michael W
Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings
离线强化学习的模型选择:医疗保健环境的实际考虑
- DOI:
- 发表时间:2021-07-23
- 期刊:
- 影响因子:0
- 作者:Shengpu Tang;J. Wiens
- 通讯作者:J. Wiens
Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data.
使用 FIDDLE 使 EHR 分析大众化:一种灵活的数据驱动的结构化临床数据预处理管道。
- DOI:
- 发表时间:2020-12-09
- 期刊:
- 影响因子:0
- 作者:Tang, Shengpu;Davarmanesh, Parmida;Song, Yanmeng;Koutra, Danai;Sjoding, Michael W;Wiens, Jenna
- 通讯作者:Wiens, Jenna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael William Sjoding其他文献
Michael William Sjoding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael William Sjoding', 18)}}的其他基金
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10687507 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10693285 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10491373 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10272748 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10221055 - 财政年份:2019
- 资助金额:
$ 22.86万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10015336 - 财政年份:2019
- 资助金额:
$ 22.86万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
9927810 - 财政年份:2019
- 资助金额:
$ 22.86万 - 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
- 批准号:
9292908 - 财政年份:2017
- 资助金额:
$ 22.86万 - 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
- 批准号:
9908166 - 财政年份:2017
- 资助金额:
$ 22.86万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Investigating the Effect of FLASH-Radiotherapy on Tumor and Normal Tissue
研究 FLASH 放射治疗对肿瘤和正常组织的影响
- 批准号:
10650476 - 财政年份:2023
- 资助金额:
$ 22.86万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 22.86万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 22.86万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 22.86万 - 项目类别: