Novel molecular therapies for CPVT
CPVT 的新型分子疗法
基本信息
- 批准号:10450029
- 负责人:
- 金额:$ 17.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-12 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adrenergic AgentsAdvisory CommitteesAffectAlanineArrhythmiaBiomedical EngineeringBostonCa(2+)-Calmodulin Dependent Protein KinaseCalciumCardiacCardiac MyocytesCardiac conduction systemCardiac developmentCardiovascular systemCatecholaminergic Polymorphic Ventricular TachycardiaCellsChildClinicalCommunitiesDataDefectDefibrillatorsDependovirusDevelopmentDiseaseDisease modelElectrophysiology (science)EventExerciseFamilyFlecainideFoundationsGene MutationGenerationsGenesGenome engineeringGenotypeHeartHeart ArrestHereditary DiseaseHuman EngineeringInheritedInternationalInvestigationLeadLifeMalignant - descriptorMediatingMentorsMentorshipModelingMolecularMusMutationMyocardialOutcomePathogenesisPathogenicityPatientsPediatric HospitalsPediatric cardiologyPeptidesPharmacologyPhenotypePhosphorylationProgram DevelopmentPublishingRecurrenceReportingResearchResearch PersonnelResearch TechnicsRoleRyanodineRyanodine Receptor Calcium Release ChannelSerineSignal PathwaySodiumSodium ChannelSodium Channel BlockersStressStructureSyncopeSystemTestingTherapeuticTimeTissue EngineeringTissue ModelTissuesToxic effectTrainingTraining ProgramsTranslational ResearchTranslationsTreatment FailureVentricular Arrhythmiacalmodulin-dependent protein kinase IIcareer developmentchromatin immunoprecipitationclinical applicationclinical phenotypeclinical translationclinically relevanteffectiveness testingexperienceexperimental studyfirst-in-humangene therapygenome editingheart rhythmhuman tissueimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinhibitorinsightmedical schoolsmouse modelnovelnovel therapeutic interventionnovel therapeuticspatch clamppreventprofessorprogramsreceptorsudden cardiac deathtargeted deliverytherapy developmenttreatment optimizationyoung adult
项目摘要
This proposal describes a five-year training and career development program that will prepare its principle
investigator, Dr. Vassilios Bezzerides, to be an independent investigator in the field of channelopathies and
inherited arrhythmia disorders. This program will build on Dr. Bezzerides’ existing background in cellular and
clinical electrophysiology by providing additional expertise in induced pluripotent stem cells (iPSCs), genome
editing, and translational research techniques. The principal mentor for this program will be Dr. William Pu,
Professor of Pediatrics and Cardiology at Boston Children’s Hospital and Harvard Medical School. Dr. Pu is an
internationally recognized expert in cardiac development and iPSC disease modeling. The enclosed proposal
outlines a comprehensive training program with structured mentorship including an advisory committee with
expertise in cardiovascular research and bioengineering, formal coursework, and a research plan that will
provide rigorous training in disease modeling and novel therapy development. This proposal is focused on the
investigation of novel therapeutic strategies for catecholaminergic polymorphic ventricular tachycardia (CPVT),
a highly malignant inherited arrhythmia disorder characterized by life-threatening ventricular arrhythmias during
times of stress or exercise. Current CPVT therapy is inadequate, with both therapy related toxicity and frequent
treatment failures. Most CPVT cases are caused by mutations in ryanodine receptor type 2 (RYR2), which
encodes the major cardiomyocyte intracellular Ca+2 release channel. Using iPSC-CMs, we developed a novel
engineered human myocardial model (“opto-chip”) of CPVT that reproduces key features of this arrhythmia at a
tissue level. Our preliminary data demonstrates that inhibition of Ca2+/calmodulin kinase II (CaMKII) blocks the
pro-arrhythmic phenotype of CPVT iPSC-CMs. In Aim 1, using pharmacology, genome editing, and engineered
tissues, Dr. Bezzerides will determine if CaMKII inhibition is a broadly applicable by evaluating pathogenic
CPVT genotypes from each of the four canonical pathogenic regions within the RYR2 gene and determine the
degree of inhibition necessary for arrhythmia suppression. In Aim 2, Dr. Bezzerides will further develop CaMKII
inhibition as a clinically applicable therapeutic strategy for CPVT. To refine this strategy Dr. Bezzerides will test
the effectiveness of target CaMKII in the cells of the cardiac conduction system using clinically relevant
outcomes. A positive result would serve as the basis for further study as a step towards a first-in-human trial. In
Aim 3, Dr. Bezzerides will use genome editing, patch clamp, and a second generation opto-chip assay to
dissect the role of late sodium current blockade in the treatment of CPVT. Although controversial, late sodium
current blockade may be the mechanistic basis for flecainide’s efficacy in CPVT. Better understanding of the
mechanism may lead to new therapeutic options with greater efficacy and lower toxicity. Together, these
studies will advance the understanding of arrhythmogenesis in CPVT, open new avenues for novel therapies,
and provide a foundation for an independent research program led by Dr. Bezzerides.
该提案描述了一个为期五年的培训和职业发展计划,该计划将制定其原则
研究员 Vassilios Bezzerides 博士将成为通道病领域的独立研究员
该项目将以 Bezzerides 博士在细胞和遗传性心律失常方面的现有背景为基础。
通过提供诱导多能干细胞 (iPSC)、基因组方面的额外专业知识来进行临床电生理学
该项目的主要导师是 William Pu 博士,
濮博士是波士顿儿童医院和哈佛医学院的儿科和心脏病学教授。
所附提案是国际公认的心脏发育和 iPSC 疾病建模专家。
概述了一个全面的培训计划和结构化的指导,包括一个咨询委员会
心血管研究和生物工程方面的专业知识、正式课程以及研究计划
在疾病建模和新疗法开发方面提供严格的培训。
儿茶酚胺能多形性室性心动过速(CPVT)新治疗策略的研究,
一种高度恶性的遗传性心律失常疾病,其特征是在发病期间出现危及生命的室性心律失常。
目前的 CPVT 治疗不足,存在与治疗相关的毒性且频繁。
大多数 CPVT 病例是由 2 型兰尼定受体 (RYR2) 突变引起的。
使用 iPSC-CM 编码主要的心肌细胞胞内 Ca+2 释放通道。
CPVT 的工程人体心肌模型(“光芯片”)可在一定时间内再现这种心律失常的关键特征
我们的初步数据表明,抑制 Ca2+/钙调蛋白激酶 II (CaMKII) 可阻断
CPVT iPSC-CM 的促心律失常表型在目标 1 中,利用药理学、基因组编辑和工程设计。
Bezzerides 博士将通过评估致病性来确定 CaMKII 抑制是否广泛适用
RYR2 基因内四个典型致病区域中每一个的 CPVT 基因型,并确定
在目标 2 中,Bezzerides 博士将进一步开发 CaMKII。
为了完善这一策略,Bezzerides 博士将测试抑制作为 CPVT 的临床适用治疗策略。
使用临床相关的靶标 CaMKII 在心脏传导系统细胞中的有效性
积极的结果将作为进一步研究的基础,作为迈向首次人体试验的一步。
目标 3,Bezzerides 博士将使用基因组编辑、膜片钳和第二代光芯片检测来
剖析晚期钠电流阻断在 CPVT 治疗中的作用,尽管存在争议,但晚期钠电流阻断的作用。
目前的封锁可能是氟卡尼在 CPVT 中疗效的机制基础。
这些机制可能会带来更有效、更低毒性的新治疗选择。
研究将增进对 CPVT 心律失常发生的理解,为新疗法开辟新途径,
并为 Bezzerides 博士领导的独立研究项目提供基础。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia.
儿茶酚胺能多形性室性心动过速的基因治疗。
- DOI:10.1016/j.hlc.2023.01.018
- 发表时间:2023-04-01
- 期刊:
- 影响因子:0
- 作者:P. Pérez;R. Hylind;T. Roston;Vassilios J. Bezzerides;D. Abrams
- 通讯作者:D. Abrams
Paediatric/congenital cardiology physician scientists-An endangered species.
儿科/先天性心脏病医师科学家-濒临灭绝的物种。
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:5.5
- 作者:Hansmann, Georg;Bezzerides, Vassilios
- 通讯作者:Bezzerides, Vassilios
Gene therapy for inherited arrhythmias.
遗传性心律失常的基因治疗。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:10.8
- 作者:Bezzerides, Vassilios J;Prondzynski, Maksymilian;Carrier, Lucie;Pu, William T
- 通讯作者:Pu, William T
Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca2+/Calmodulin-Dependent Kinase II.
通过抑制 Ca2/钙调蛋白依赖性激酶 II 治疗儿茶酚胺能多形性室性心动过速。
- DOI:10.1161/circulationaha.118.038514
- 发表时间:2019-07-30
- 期刊:
- 影响因子:37.8
- 作者:Vassilios J. Bezzerides;Ana Caballero;Suya Wang;Yulan Ai;R. Hylind;Fujian Lu;Danielle A Heims;K. D. Chambers;Donghui Zhang;D. Abrams;W. Pu
- 通讯作者:W. Pu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vassilios James Bezzerides其他文献
Vassilios James Bezzerides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vassilios James Bezzerides', 18)}}的其他基金
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
相似海外基金
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
Synergy of lipolysis and lipophagy in alcoholic liver disease
脂肪分解和脂肪吞噬在酒精性肝病中的协同作用
- 批准号:
10489818 - 财政年份:2021
- 资助金额:
$ 17.02万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10468156 - 财政年份:2021
- 资助金额:
$ 17.02万 - 项目类别:
Synergy of lipolysis and lipophagy in alcoholic liver disease
脂肪分解和脂肪吞噬在酒精性肝病中的协同作用
- 批准号:
10455130 - 财政年份:2021
- 资助金额:
$ 17.02万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10301622 - 财政年份:2021
- 资助金额:
$ 17.02万 - 项目类别: