The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
基本信息
- 批准号:10733915
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAcetylationAcetyltransferaseAction PotentialsAffectAnimal ModelArrhythmiaBiological ModelsCalciumCardiacCardiac MyocytesCardiomyopathiesCardiovascular DiseasesCatalytic DomainCharacteristicsComplexDataDevelopmental Delay DisordersDilated CardiomyopathyDiseaseElectrophysiology (science)FamilyFamily memberFemaleFibrosisFunctional disorderGenetic Predisposition to DiseaseHeartHeart AbnormalitiesHeart DiseasesHeart failureHomeostasisHumanImpairmentIndividualIon ChannelIonsKnockout MiceLearning DisabilitiesMediatingModelingModificationMorbidity - disease rateMutationMyocardialMyocardial dysfunctionN-terminalPatientsPhenotypePhysiologicalPost-Translational Protein ProcessingPotassiumPotassium ChannelProteinsProteomeProteomicsRecurrenceRiskRoleSodiumSodium ChannelStructureSudden DeathTestingVentricular ArrhythmiaVentricular Dysfunctionautism spectrum disorderboysclinical phenotypecongenital heart disordergenetic pedigreeheart functionheart rhythmimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsightkindredmalemortalitymouse modelnoveloverexpressionpressureprotein complexrisk stratificationstem cell modeltherapeutic development
项目摘要
PROJECT SUMMARY
Cardiomyopathy and heart failure are leading causes of morbidity and mortality world-wide. In
addition to ventricular dysfunction, heart-failure associated ventricular arrhythmias cause sudden
death with few disease-modifying therapies. Changes in myocardial conduction, increased fibrosis,
alterations of ion channel characteristics and genetic susceptibilities have all been postulated to
underlie the increased risk of arrhythmia in heart failure, but no unifying mechanism is known. Post-
translational modifications (PTMs) of cardiac proteins have emerged as critical factors in mediating
normal physiologic function or leading to heart disease when dysregulated. Recently mutations in the
N-terminal acetyltransferase complex type A (NatA) have been identified in patients with congenital
heart disease, cardiomyopathy, and arrhythmia. This protein complex acetylates the N-terminus of
nascent proteins regulating stability, subcellular localization, and complex formation, with nearly 40%
of the proteome as potential targets. We have recently identified a large family with a novel mutation
in the catalytic subunit of NatA, NAA10. Male patients have severely prolonged QTs, recurrent
arrhythmias, developmental delay, learning disabilities, and cardiomyopathy, with female patients
more variably affected. We created models of NAA10 dysfunction using induced pluripotent stem
cells (iPSCs) derived from several affected male patients. Electrophysiologic analysis of differentiated
iPSC-derived cardiomyocytes (iPSC-CMs) demonstrated action potential duration (APD)
prolongation, abnormalities of sarcomeric structure, calcium handling and corresponding
dysregulation of sodium and potassium currents. Establishing a network of collaborators, we
investigated the mechanism of NAA10 dysfunction and developed an animal model for cardiac-
specific ablation of NAA10. We propose to use our scalable model systems to investigate the
currently unknown role of N-terminal acetylation within the heart as an entry point to understanding
the mechanisms of arrhythmia risk in heart failure. In Aim 1, we will determine the mechanism of how
N-terminal acetylation regulates sodium and potassium ion channels along with the discovery of other
target proteins. In Aim 2, we will use recently developed murine models to selectively ablate Naa10
and the paralogue Naa12 within the heart to determine the causative mechanisms of N-terminal
acetylation in heart failure and arrhythmogenesis. In Aim 3, we examine the contribution of N-terminal
acetylation in acquired forms of heart disease including human heart failure. This transformative
proposal will provide novel mechanistic insight into the poorly understood role of N-terminal
acetylation in cardiovascular disease with potential for improved arrhythmia risk stratification and
therapeutic development.
项目概要
心肌病和心力衰竭是全世界发病和死亡的主要原因。在
除了心室功能障碍外,心力衰竭相关的室性心律失常还会导致突发性心律失常。
很少有疾病缓解疗法导致死亡。心肌传导的变化,纤维化增加,
离子通道特征和遗传易感性的改变都被假设为
是心力衰竭心律失常风险增加的基础,但尚无统一机制。邮政-
心脏蛋白的翻译修饰(PTM)已成为介导的关键因素
正常的生理功能或失调时导致心脏病。最近突变
已在先天性痴呆患者中发现了 A 型 N 末端乙酰转移酶复合物 (NatA)
心脏病、心肌病和心律失常。该蛋白质复合物乙酰化 N 末端
新生蛋白调节稳定性、亚细胞定位和复合物形成,近 40%
蛋白质组作为潜在目标。我们最近发现了一个具有新突变的大家族
位于 NatA 的催化亚基 NAA10 中。男性患者QT间期严重延长,且反复发作
女性患者出现心律失常、发育迟缓、学习障碍和心肌病
受到的影响更加不同。我们使用诱导多能干细胞创建了 NAA10 功能障碍模型
来自几名受影响的男性患者的细胞(iPSC)。分化的电生理分析
iPSC 衍生的心肌细胞 (iPSC-CM) 表现出动作电位持续时间 (APD)
延长、肌节结构异常、钙处理和相应的
钠和钾电流失调。建立合作者网络,我们
研究了 NAA10 功能障碍的机制并开发了心脏疾病动物模型
NAA10 的特异性消融。我们建议使用我们的可扩展模型系统来研究
目前未知的 N 末端乙酰化在心脏中的作用作为理解的切入点
心力衰竭心律失常风险的机制。在目标 1 中,我们将确定如何实现的机制
N 末端乙酰化调节钠离子通道和钾离子通道以及其他通道的发现
目标蛋白质。在目标 2 中,我们将使用最近开发的小鼠模型来选择性消融 Naa10
和心脏内的旁系同源物 Naa12 以确定 N 末端的致病机制
心力衰竭和心律失常发生中的乙酰化。在目标 3 中,我们检查 N 端的贡献
获得性心脏病(包括人类心力衰竭)中的乙酰化。这种变革性的
该提案将为人们对 N 末端的作用知之甚少提供新颖的机制见解
心血管疾病中的乙酰化有可能改善心律失常风险分层和
治疗的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vassilios James Bezzerides其他文献
Vassilios James Bezzerides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vassilios James Bezzerides', 18)}}的其他基金
相似国自然基金
SCML4协同乙酰化转移酶HBO1促进Trm表观遗传修饰增强抗肿瘤免疫的分子机制研究
- 批准号:82303153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核苷酸转移酶cGAS乙酰化修饰抑制剂的设计、合成及抗自身免疫性疾病的机制研究
- 批准号:82273767
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
组蛋白乙酰化转移酶KAT7在血管衰老中的作用及表观遗传机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ac4C乙酰化转移酶NAT10通过促进HMGB1转录介导CD8+T细胞节律紊乱与功能抑制的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N端乙酰转移酶蛋白家族在核糖体上乙酰化修饰的分子机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating essential chromatin regulators in cancers with SWI/SNF mutations
研究具有 SWI/SNF 突变的癌症中的必需染色质调节因子
- 批准号:
10607451 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Identifying kinase signaling pathways linked to tau-mediated neurodegeneration
识别与 tau 介导的神经变性相关的激酶信号通路
- 批准号:
10753257 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Studies on the impact of acetyl-cysteine on metabolism
乙酰半胱氨酸对代谢影响的研究
- 批准号:
10574934 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Fatty acid oxidation in female cardioprotection
脂肪酸氧化对女性心脏的保护作用
- 批准号:
10362454 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Radiation-induced vascular reprogramming in glioblastoma
放射诱导的胶质母细胞瘤血管重编程
- 批准号:
10540761 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别: