Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
基本信息
- 批准号:10440619
- 负责人:
- 金额:$ 36.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAnatomyArchitectureAreaAttentionAttention Deficit DisorderAttention deficit hyperactivity disorderAttentional deficitAuditoryAutomobile DrivingBasic ScienceBehaviorBehavioralBiological ModelsBrainCategoriesCharacteristicsClinical ResearchCodeComplementComputer ModelsData AnalyticsDiagnosisDimensionsDiseaseDissociationDorsalEnvironmentFoundationsFunctional Magnetic Resonance ImagingGoalsHealthHumanImpairmentInfluentialsLiteratureLocationMeasuresMediatingMethodologyMethodsMissionModelingNatureNeuropsychologyNeurosciences ResearchPerceptionPopulationProcessPropertyPsychophysicsRadiology SpecialtyReadingResearchResearch Project GrantsResolutionRoleScanningSelection CriteriaSignal TransductionSocial InteractionStimulusStimulus Deprivation-Induced AmblyopiaStrokeStructureTechniquesTestingTheoretical StudiesTimeVariantVisualVisual PerceptionVisual attentionVisual system structureWorkadvanced analyticsautism spectrum disorderbasecognitive controlcognitive neurosciencefeature selectioninformation processinginnovationinsightmultimodalityneglectnervous system disorderneuroimagingneuromechanismneurotransmissionnovelrelating to nervous systemresponsescreeningselective attentionsomatosensorysupport networktheoriesvisual informationvisual stimulus
项目摘要
PROJECT SUMMARY
The environment contains far more information than the brain can process at once. Visual attention
helps us cope with such information overload by selectively processing relevant information. In many
situations, humans need to select arbitrary features in a scene. Theories of attention have proposed
that such selection is mediated by a priority representation that encodes the relative importance of
each visual stimulus in the scene. However, much remains unknown regarding how the brain
computes and maintains attentional priority for features. Our long-term goal is to understand how the
brain selects different types of information via population neural activity to serve goal-directed
behavior. In this project, we will examine the neural basis of two basic properties of feature attention:
its resolution and capacity. We hypothesize that distinct areas in the dorsal frontoparietal network
encode priority information with different resolution and capacity limit, supported by distinct neural
population activity profiles. We will test this overall hypothesis by pursuing three specific aims. First,
we will establish functional specializations in frontoparietal areas in representing feature priority with
different levels of resolution. Second, we will examine the nature of priority signals that gives rise to
the capacity limit in attending to multiple stimuli. Third, we will quantify the dimensionality of priority
signals and examine how neural dimensionality determines the resolution and capacity of the priority
representation. The proposed research is expected to significantly advance our understanding of how
the brain selects visual features, in terms of the neural machinery and computational principles that
enable such selection. A deeper understanding of how the brain selects visual features will provide
important constraints for theories and models of attention and can potentially transform our
understanding of visual information processing and cognitive control. The research project is
innovative both in terms of conceptual and methodological advances. Conceptually, the project will
test novel hypotheses regarding the functional dissociations in frontoparietal cortex and the
underlying computational principles of neural coding. Methodologically, the project employs a multi-
modal approach including behavioral, neuroimaging, and neuroperturbation techniques,
complemented by advanced data analytical and computational modeling methods, to gain
fundamental insights into the brain mechanisms of visual attention.
项目概要
环境中包含的信息远多于大脑能够立即处理的信息。视觉注意力
通过有选择地处理相关信息,帮助我们应对这种信息过载。在许多
在某些情况下,人类需要选择场景中的任意特征。注意力理论提出
这种选择是由优先级表示介导的,该优先级表示编码了相对重要性
场景中的每一个视觉刺激。然而,关于大脑如何
计算并维护特征的注意力优先级。我们的长期目标是了解如何
大脑通过群体神经活动选择不同类型的信息来服务于目标导向
行为。在这个项目中,我们将研究特征注意力的两个基本属性的神经基础:
它的分辨率和容量。我们假设背侧额顶网络中的不同区域
以不同的分辨率和容量限制对优先级信息进行编码,并由不同的神经网络支持
人口活动概况。我们将通过追求三个具体目标来检验这一总体假设。第一的,
我们将在额顶区域建立功能专业化,以代表特征优先级
不同级别的分辨率。其次,我们将研究引起优先级信号的性质
处理多种刺激的能力限制。第三,我们将量化优先级的维度
信号并检查神经维度如何决定优先级的分辨率和容量
表示。拟议的研究预计将显着增进我们对如何
大脑根据神经机制和计算原理选择视觉特征
启用此类选择。更深入地了解大脑如何选择视觉特征将提供
注意力理论和模型的重要限制,可能会改变我们的
了解视觉信息处理和认知控制。该研究项目是
在概念和方法上都具有创新性。从概念上讲,该项目将
测试关于额顶叶皮层和大脑皮层功能分离的新假设
神经编码的基本计算原理。从方法上来说,该项目采用了多种
模态方法,包括行为、神经影像和神经扰动技术,
辅以先进的数据分析和计算建模方法,以获得
对视觉注意力的大脑机制的基本见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taosheng Liu其他文献
Taosheng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taosheng Liu', 18)}}的其他基金
Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
- 批准号:
10707522 - 财政年份:2022
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanism of preference formation during risky decisions
风险决策过程中偏好形成的神经机制
- 批准号:
8445740 - 财政年份:2013
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanisms of attentional priority for visual features and objects
视觉特征和物体注意优先的神经机制
- 批准号:
8346020 - 财政年份:2012
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanisms of attentional priority for visual features and objects
视觉特征和物体注意优先的神经机制
- 批准号:
8502510 - 财政年份:2012
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanisms of attentional priority for visual features and objects
视觉特征和物体注意优先的神经机制
- 批准号:
8675258 - 财政年份:2012
- 资助金额:
$ 36.83万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别: