Systematic Alzheimer's disease drug repositioning (SMART) based on bioinformatics-guided phenotype screening and image-omics
基于生物信息学引导的表型筛选和图像组学的系统性阿尔茨海默病药物重新定位(SMART)
基本信息
- 批准号:10431823
- 负责人:
- 金额:$ 68.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease therapeuticAlzheimer&aposs disease therapyAmyloid beta-ProteinAnimal ModelArtificial IntelligenceAutomobile DrivingBackBig DataBioinformaticsBiological AssayBiological ModelsBiologyBrainCell Culture TechniquesCell LineCell modelCellular AssayClinicalClinical ResearchClinical TrialsCommunitiesComputational algorithmComputer softwareDataDatabasesDiseaseDoseDrug TargetingDrug usageEnsureEnvironmentEventFunctional disorderFundingFutureGeneral HospitalsGenesHospitalsHumanImageIn VitroInstitutesKnowledgeLeast-Squares AnalysisLibrariesLiteratureMapsMassachusettsMedicineMethodist ChurchMethodsModelingMolecularNetwork-basedNeuronsPathogenesisPathogenicityPathologyPathway interactionsPersonsPharmaceutical PreparationsPhasePhenotypeReportingResearch InstituteRunningSchemeSeriesSignal TransductionSynapsesSystemTauopathiesTechniquesTestingTherapeuticTimeToxicologyTranslationsUnited StatesUnited States National Institutes of HealthUpdateValidationWidthWorkbasebench-to-bedside translationcomorbiditycomputational platformcostdosagedrug candidatedrug developmentdrug discoverydrug efficacydrug repurposingexhaustionfeedingimprovedin vitro Modelin vivoindependent component analysisindividual responseinterestknowledge basenerve stem cellneuron lossnovelnovel therapeuticspublic health relevancerelating to nervous systemresponsescreeningsuccesssymptom treatmenttau Proteinstau aggregationtau-1three dimensional cell culturetranscriptomics
项目摘要
PROJECT SUMMARY
Given the complexity of Alzheimer's Disease (AD) pathogenesis and the associated co-morbid conditions, both
the “depth” and the “width” of currently available drug repurposing solutions need to be improved in order to
deliver effective AD therapeutic solutions. The depth of a drug-repurposing project refers to the level of
understanding of disease mechanism and drug-target interactions across a wide searching space for the
combination of dosage and treatment time. Achieving depth requires a reliable AD model system that
comprehensively recapitulates AD pathogenesis in a human brain-like environment, and sophisticated
transcriptomic profiles, which can reveal molecular-level changes underlying disease-reversing phenotypes
across multiple treatment conditions. The width of a therapy search relies on the efficacy of predicting and
validating effects of candidate compounds from an enormous search space. Width can be achieved from novel
computational algorithms connecting –omics changes with phenotypic changes, thus guiding the search with
improved knowledge on mechanisms and avoiding exhaustive testing of every available drug.
Integrating the systems medicine and drug repositioning expertise of the Wong Lab at the Houston Methodist
Research Institute of Houston Methodist Hospital with the Alzheimer's biology expertise of the Kim and Tanzi
labs at Massachusetts General Hospital, we propose a SysteMatic Alzheimer's disease drug ReposiTioning
(SMART) framework based on bioinformatics-guided phenotype screening. Reformatting a novel three-
dimensional human neural stem cell culture model of AD (a.k.a. Alzheimer's in a dish) developed in the Kim
and Tanzi labs for high content screening, the Wong lab screened 2,640 known drugs and bioactive
compounds and obtained a panel of 38 primary hits that strongly inhibit β-amyloid-driven p-tau accumulation.
We hypothesize that iteratively running relatively small screens with our novel 3D cell model and applying
systematic artificial intelligence modeling to the transcriptomic profiles of the screening hits will allow us to: 1)
quickly obtain a panel of robust novel drug candidates for AD, and 2) gain an in-depth understanding of
disease mechanisms from those repositioned drug candidates, which will subsequently improve the success
rate of predicting novel hits.
Using the primary 38 hits as a starting point, the SMART computational modules will update the existing
NeuriteIQ software package to quantify the image data from high content screening; it will also incorporate
publicly available big data transcriptomic profiles to predict candidate compounds inducing similar pathway
changes as those original compounds, effectively expanding the search width to tens of thousands of
compounds while only requiring functional validation of less than 100 drug candidates. The validated
predictions will, in turn, add to the panel of known hits that will launch the next round of computational
predictions and experimental validations, efficiently generating candidates for novel AD therapies (Aim 1).
SMART's iterative prediction-validation scheme effectively connects more transcriptomic profiles to desirable
phenotypic changes. Thus, we will apply systematic image-omics modeling to uncover novel mechanisms
driving such phenotypes. For all the validated hits, dose-responses for the phenotype of pTau inhibition will be
obtained using the 3D culture model; while the dose-responses for individual genes and pathways will be
modeled through public and in-house generated transcriptomic profiles. We will use Partial Least Square
Regression models to identify gene modules with matching dose-response curves as the phenotypes, thus
allowing us to go beyond the confinement of canonical pathway maps and identify novel functional modules
specifically related to phenotypes of interest (Aim 2).
Selected compounds derived from the previous two aims will be evaluated in human neurons directly derived
from AD patients and in animal models (Aim 3).
Success of this work will lead to new AD therapeutic compounds ready for translation into clinical trials, as well
as a deeper understanding of the molecular mechanisms of AD pathophysiology. In addition, the SMART
framework for drug repositioning will be generalizable to other big data and disease platforms.
项目概要
鉴于阿尔茨海默氏病 (AD) 发病机制的复杂性和相关的共病状况,两者
目前可用的药物再利用解决方案的“深度”和“宽度”需要改进,以便
提供有效的 AD 治疗方案的深度是指药物再利用项目的水平。
在广泛的搜索空间中了解疾病机制和药物靶点相互作用
剂量和治疗时间的结合需要可靠的 AD 模型系统。
全面总结了类人脑环境下的AD发病机制,并提出了复杂的
转录组图谱,可以揭示疾病逆转表型背后的分子水平变化
跨多种治疗条件的治疗搜索的宽度取决于预测和治疗的效果。
从新颖的搜索空间中验证候选化合物的效果可以实现。
连接组学变化与表型变化的计算算法,从而指导搜索
提高对机制的了解并避免对每种可用药物进行详尽的测试。
整合休斯顿卫理公会黄实验室的系统医学和药物重新定位专业知识
休斯敦卫理公会医院研究所拥有 Kim 和 Tanzi 的阿尔茨海默病生物学专业知识
在马萨诸塞州总医院的实验室,我们提出了一种系统性阿尔茨海默病药物重新定位
(SMART)基于生物信息学指导的表型筛选的框架。
金氏开发的AD(又名培养皿中的阿尔茨海默病)的三维人类神经干细胞培养模型
和 Tanzi 实验室进行高内涵筛选,Wong 实验室筛选了 2,640 种已知药物和生物活性物质
化合物并获得了一组 38 个初级命中,可强烈抑制 β-淀粉样蛋白驱动的 p-tau 积累。
我们勇敢地使用新颖的 3D 单元模型迭代运行相对较小的屏幕,并应用
对筛选命中的转录组图谱进行系统的人工智能建模将使我们能够:1)
快速获得一组强大的 AD 候选新药,并且 2) 深入了解
从那些重新定位的候选药物中了解疾病机制,这将随后提高成功率
预测小说点击率。
以最初的 38 个命中作为起点,SMART 计算模块将更新现有的
NeuriteIQ 软件包用于量化高内涵筛选的图像数据;
公开的大数据转录组图谱可预测诱导相似途径的候选化合物
随着那些原始化合物的变化,将搜索宽度扩展到数万个
化合物,同时只需要不到 100 种候选药物的功能验证。
反过来,预测将添加到已知命中的面板中,从而启动下一轮计算
预测和实验验证,有效生成新型 AD 疗法的候选药物(目标 1)。
SMART 的迭代预测验证方案有效地将更多转录组谱与所需的转录组谱连接起来
因此,我们将应用系统的图像组学模型来揭示新的机制。
对于所有经过验证的命中,pTau 抑制表型的剂量反应将是:
使用 3D 培养模型获得;而单个基因和途径的剂量反应将是
我们将使用偏最小二乘法通过公共和内部生成的转录组图谱进行建模。
回归模型识别具有匹配剂量反应曲线的基因模块作为表型,从而
使我们能够超越规范通路图的限制并识别新的功能模块
与感兴趣的表型特别相关(目标 2)。
来自前两个目标的选定化合物将在直接衍生的人类神经元中进行评估
来自 AD 患者和动物模型(目标 3)。
这项工作的成功也将导致新的 AD 治疗化合物准备好转化为临床试验
作为对AD病理生理学分子机制的更深入了解,SMART。
药物重新定位框架将推广到其他大数据和疾病平台。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
OCIAD1 contributes to neurodegeneration in Alzheimer's disease by inducing mitochondria dysfunction, neuronal vulnerability and synaptic damages.
OCIAD1 通过诱导线粒体功能障碍、神经元脆弱性和突触损伤,导致阿尔茨海默病的神经变性。
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:11.1
- 作者:Li, Xuping;Wang, Lin;Cykowski, Matthew;He, Tiancheng;Liu, Timothy;Chakranarayan, Joshua;Rivera, Andreana;Zhao, Hong;Powell, Suzanne;Xia, Weiming;Wong, Stephen T C
- 通讯作者:Wong, Stephen T C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN TC WONG其他文献
STEPHEN TC WONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN TC WONG', 18)}}的其他基金
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10028242 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
- 批准号:
10337313 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10172878 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
- 批准号:
10556374 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
- 批准号:
10056730 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
- 批准号:
10677032 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
- 批准号:
10260556 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10632014 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
- 批准号:
10677032 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10403970 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别: