Convergent AI for Precise Breast Cancer Risk Assessment

融合人工智能精准乳腺癌风险评估

基本信息

  • 批准号:
    10632014
  • 负责人:
  • 金额:
    $ 49.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Breast cancer continues to be one of the leading causes of cancer death among women in the United States, despite the advances made in the identification of prognostic and predictive markers for breast cancer treatment. Mammographic reporting is the first step in the screening and diagnosis of breast cancer. Abnormal mammographic findings such as a mass, abnormal calcifications, architectural distortion, and asymmetric density can lead to a cancer diagnosis. The American College of Radiology developed the Breast Imaging Reporting and Data System (BI-RADS) lexicon to standardize mammographic reporting to facilitate biopsy decision-making. However, application of the BI-RADS lexicon has resulted in substantial inter-observer variability, including inappropriate term usage and missing data. This observer variability has lead in part to a considerable variation in the rate of biopsy across the US, with a majority of breast biopsies ultimately found to be benign lesions. Hence, there is the need for a system that can better stratify the risk of cancer and define a more optimum threshold for biopsy. To address this need, we propose to develop an intelligent-augmented risk assessment system for breast cancer management based on multimodality image and clinical information with deep learning and data mining techniques. This study aims to develop a well-defined, novel risk assessment system incorporating multi-modality datasets with a novel predictive model that outputs a probability measure of cancer that is more clinically relevant and informative than the six discrete BI-RADS scores. Using mammographic or breast ultrasound BI- RADS reporting signatures and radiomics features, a predictive model that is more precise and clinically relevant may be developed to target well-characterized and defined specific biopsy patient subgroups rather than a broad heterogeneous biopsy group. Our proposed technique entails a novel strategy using Natural Language Processing to extract pertinent clinical risk factors related to breast cancer from vast amounts of patient charts automatically and integrate them with corresponding image-omics data and radiologist- generated reports. We will extract and quantitate image features from both large amounts of mammography and breast ultrasound images and combine them with the radiology reports and pertinent clinical risk profile and other patient characteristics to generate a risk assessment score to aid radiologists and oncologists in breast cancer risk assessment and biopsy decisions. Such a web-based application tool will be the first breast cancer risk assessment system based on integrative radiomics data augmented by AI methods. The iBRISK tool will enhance engagement between the patient and clinician for making an informed decision on whether or not to biopsy. Our hypothesis is that BI-RADS reports and the imaging metrics contain significant features for the breast cancer risk assessment and biopsy decision-making. By using BI-RADS reports and the imaging metrics, we will be able to develop new metrics to better breast cancer risk assessment. The novelty of the breast cancer risk assessment system is that it will incorporate a new predictive model that deploys deep learning and AI technology to provide a more reliable stratification of the BI-RADS subtypes for breast cancer risk assessment and reduce unnecessary breast biopsies and patients’ anxiety.
抽象的 乳腺癌仍然是美国女性癌症死亡的主要原因之一 尽管在乳腺癌预后和预测标记物的鉴定方面取得了进展 乳房X光检查报告是乳腺癌筛查和诊断的第一步。 乳房X光检查结果,例如肿块、异常钙化、结构扭曲和不对称 美国放射学院开发了乳腺成像技术。 报告和数据系统 (BI-RADS) 词典,用于标准化乳房 X 线摄影报告以促进活检 然而,BI-RADS 词典的应用导致了观察者之间的大量互动。 变异性,包括不恰当的术语使用和缺失的数据,这种观察者的变异性在一定程度上导致了 美国各地的活检率差异很大,大多数乳腺活检最终发现 因此,需要一种能够更好地对癌症风险进行分层并定义癌症风险的系统。 为了满足这一需求,我们建议开发一种智能增强风险。 基于多模态图像和临床信息的乳腺癌管理评估系统 深度学习和数据挖掘技术。 本研究旨在开发一个定义明确、新颖的风险评估系统,该系统包含多模态 具有新颖预测模型的数据集,可输出更具临床意义的癌症概率测量值 比使用乳房 X 光检查或乳腺超声 BI- 的六个离散 BI-RADS 评分更相关且信息丰富。 RADS 报告特征和放射组学特征,这是一种更精确、更符合临床的预测模型 可以开发相关的目标以明确特征和定义的特定活检患者亚组,而不是 与广泛的异质活检组相比,我们提出的技术需要一种使用自然的新策略。 语言处理从大量数据中提取与乳腺癌相关的临床危险因素 自动患者图表并将其与相应的图像组学数据和放射科医生集成 我们将从大量乳房X光检查中提取和量化图像特征。 和乳房超声图像,并将其与放射学报告和相关临床风险概况相结合 和其他患者特征来生成风险评估评分,以帮助放射科医生和肿瘤科医生 乳腺癌风险评估和活检决定将是第一个基于网络的应用工具。 基于人工智能方法增强的综合放射组学数据的癌症风险评估系统。 该工具将增强患者和临床医生之间的互动,以便就是否或 不进行活检。 我们的假设是 BI-RADS 报告和成像指标包含乳房的重要特征 通过使用 BI-RADS 报告和成像指标,我们可以进行癌症风险评估和活检决策。 将能够开发新的指标来更好地评估乳腺癌风险。 风险评估系统将采用部署深度学习和人工智能的新预测模型 技术为乳腺癌风险评估提供更可靠的 BI-RADS 亚型分层 减少不必要的乳房活检和患者的焦虑。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A comparative efficacy study of diagnostic digital breast tomosynthesis and digital mammography in BI-RADS 4 breast cancer diagnosis.
诊断性数字乳腺断层合成和数字乳腺 X 线摄影在 BI-RADS 4 乳腺癌诊断中的比较疗效研究。
  • DOI:
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ezeana, Chika F;Puppala, Mamta;Wang, Lin;Chang, Jenny C;Wong, Stephen T C
  • 通讯作者:
    Wong, Stephen T C
Sujitha Jayaraj ALL RIGHTS RESERVED DIGITAL PATHOLOGY WITH DEEP LEARNING FOR DIAGNOSIS OF BREAST CANCER IN LOW-RESOURCE SETTINGS By SUJITHA JAYARAJ
Sujitha Jayaraj 保留所有权利 通过深度学习在低资源环境中诊断乳腺癌的数字病理学作者:SUJITHA JAYARAJ
An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer.
基于图像组学和多网络的深度学习模型,用于肝细胞癌肝移植的风险评估。
  • DOI:
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    He, Tiancheng;Fong, Joy Nolte;Moore, Linda W;Ezeana, Chika F;Victor, David;Divatia, Mukul;Vasquez, Matthew;Ghobrial, R Mark;Wong, Stephen T C
  • 通讯作者:
    Wong, Stephen T C
Charting Single Cell Lineage Dynamics and Mutation Networks via Homing CRISPR.
通过归巢 CRISPR 绘制单细胞谱系动态和突变网络。
  • DOI:
  • 发表时间:
    2024-01-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Lin;Dong, Wenjuan;Yin, Zheng;Sheng, Jianting;Ezeana, Chika F;Yang, Li;Yu, Xiaohui;Wong, Solomon Sy;Wan, Zhihao;Danforth, Rebecca L;Han, Kun;Gao, Dingcheng;Wong, Stephen T C
  • 通讯作者:
    Wong, Stephen T C
A Time-Series Feature-Based Recursive Classification Model to Optimize Treatment Strategies for Improving Outcomes and Resource Allocations of COVID-19 Patients.
基于时间序列特征的递归分类模型,用于优化治疗策略,以改善 COVID-19 患者的结果和资源分配。
  • DOI:
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Lin;Yin, Zheng;Puppala, Mamta;Ezeana, Chika;Wong, Kelvin;He, Tiancheng;Gotur, Deepa;Wong, Stephen
  • 通讯作者:
    Wong, Stephen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN TC WONG其他文献

STEPHEN TC WONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN TC WONG', 18)}}的其他基金

Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
  • 批准号:
    10028242
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
  • 批准号:
    10337313
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
  • 批准号:
    10172878
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
  • 批准号:
    10556374
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
  • 批准号:
    10056730
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
  • 批准号:
    10677032
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
  • 批准号:
    10260556
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
  • 批准号:
    10677032
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
  • 批准号:
    10403970
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
Systematic Alzheimer's disease drug repositioning (SMART) based on bioinformatics-guided phenotype screening and image-omics
基于生物信息学引导的表型筛选和图像组学的系统性阿尔茨海默病药物重新定位(SMART)
  • 批准号:
    10431823
  • 财政年份:
    2018
  • 资助金额:
    $ 49.3万
  • 项目类别:

相似海外基金

MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
  • 批准号:
    10655641
  • 财政年份:
    2022
  • 资助金额:
    $ 49.3万
  • 项目类别:
MRI Radiomic Signatures of DCIS to Optimize Treatment
DCIS 的 MRI 放射学特征可优化治疗
  • 批准号:
    10537149
  • 财政年份:
    2022
  • 资助金额:
    $ 49.3万
  • 项目类别:
CSRD Research Career Scientist Award Application
CSRD研究职业科学家奖申请
  • 批准号:
    10657600
  • 财政年份:
    2022
  • 资助金额:
    $ 49.3万
  • 项目类别:
Contrast Enhanced Mammography (CEM) to Reduce Biopsy Rates for Less Than Highly Suspicious Breast Abnormalities: a Prospective Study
对比增强乳房X光检查(CEM)可降低高度可疑乳房异常的活检率:一项前瞻性研究
  • 批准号:
    10366445
  • 财政年份:
    2021
  • 资助金额:
    $ 49.3万
  • 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
  • 批准号:
    10028242
  • 财政年份:
    2020
  • 资助金额:
    $ 49.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了