Data Management and Statistical Analysis Core (Core C)
数据管理和统计分析核心(核心C)
基本信息
- 批准号:10405116
- 负责人:
- 金额:$ 42.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingAlgorithmsAlzheimer&aposs DiseaseAreaBiologicalBiological AssayBiological MarkersBiometryBrainCohort AnalysisCohort StudiesCollaborationsComplexDataData AnalysesData AnalyticsData ScienceData SecurityData Storage and RetrievalDatabasesDeliriumDementiaDevelopmentEnrollmentEnsureEnvironmentExperimental DesignsFacultyFundingGoalsHuman ResourcesImageImage AnalysisIncidenceInformation ManagementInformation ResourcesInfrastructureInterviewLeadershipMachine LearningMaintenanceManuscriptsMatched Case-Control StudyMedical RecordsMetadataMethodologyMethodsModelingModernizationMultivariate AnalysisObservational StudyOperations ResearchOperative Surgical ProceduresOutcomeParticipantPhysical FunctionPlayPrevention strategyProceduresProductionProductivityProtocols documentationPublicationsQuality ControlReportingReproducibilityResearchResearch DesignResearch PersonnelResourcesRiskRoleSafetySample SizeSamplingScheduleScienceScientistSeasonsSecureSourceSpecimenStandardizationStatistical Data InterpretationStructureSupervisionSystemTestingTimeVisitWorkcase controlclinically significantcognitive developmentcognitive functioncognitive reservecohortcomputing resourcescost effectivedata cleaningdata infrastructuredata managementdata qualitydesignexperienceinnovationmethod developmentmultiple chronic conditionsnoveloperationparticipant enrollmentpeer supportpreservationprogramssafety studysuccesstherapy developmenttoolweb-enabled
项目摘要
ABSTRACT
The study of delirium, and its relationship to dementia and Alzheimer's Disease, presents distinct quantitative
challenges, including elevated risk of participant attrition and confounding of associations via the influences of
surgery and multimorbidity. The Data Management and Statistical Analysis (DMSA) Core (Core C) has been
developed to address these challenges. The overall goal of the DMSA Core is to provide data management
and biostatistical resources and expertise promoting best statistical and scientific practices within this Program
Project. DMSA activities are directed toward the three mutually reinforcing Specific Aims: (1) to develop
infrastructure for data capture and metadata management; (2) to develop and maintain secure data
management infrastructure; and (3) to provide comprehensive statistical and data management support,
including novel methods development, to each of the five projects. The DMSA's leadership has substantial
expertise in observational studies, experimental design, longitudinal multivariate analysis, biomarker analysis,
scale development, machine learning, and missing data, and is seasoned in the leadership of data science
teams. Its skilled staff are substantially experienced in the acquisition and management of high quality data, as
illustrated by the extremely successful data capture and completeness initiatives developed in the initial
funding cycle. Core faculty maintain active and highly productive collaborative relationships with the SAGES
investigators. Additionally, the DMSA provides key venues for collaboration, supervision and peer support of its
faculty and personnel; maintenance of efficiency and productivity; and surety of quality control around data and
analytic issues. The DMSA has embedded continuous innovation in its operations; examples of this innovation
include novel scale development for cognitive and physical function; extended matching algorithms in
case/control design, and the development of novel and integrated web-enabled data management and
analysis tools, which enhance the reproducibility of scientific findings. The DMSA will provide the venue for
efficient and cost effective information management and data analysis of the five projects proposed here; the
feasibility of this ambitious effort is demonstrated by our success in the initial funding cycle and our well-
developed research operations model. This Program Project has tremendous potential to advance the science
of delirium, leading ultimately to the development of interventions targeting its incidence and sequelae.
Ultimately, this Program Project holds tremendous potential to advance our understanding of delirium, and to
develop more effective strategies for prevention and treatment of delirium and associated conditions and
complications. The DMSA will play a critical role in its success.
抽象的
对谵妄及其与痴呆和阿尔茨海默氏病的关系的研究提出了不同的定量研究
挑战,包括参与者流失的风险增加以及由于以下因素的影响而混淆协会
手术和多种疾病。数据管理和统计分析 (DMSA) 核心(核心 C)已
为应对这些挑战而开发。 DMSA Core 的总体目标是提供数据管理
以及生物统计资源和专业知识,促进本计划内的最佳统计和科学实践
项目。 DMSA 活动旨在实现三个相辅相成的具体目标:(1) 制定
数据采集和元数据管理基础设施; (2) 开发和维护安全数据
管理基础设施; (3) 提供全面的统计和数据管理支持,
包括五个项目中每一个项目的新方法开发。 DMSA 的领导力具有重大意义
观察研究、实验设计、纵向多变量分析、生物标志物分析方面的专业知识,
规模开发、机器学习和缺失数据,并且在数据科学的领导方面经验丰富
团队。其技术精湛的员工在高质量数据的获取和管理方面拥有丰富的经验,
最初开发的极其成功的数据捕获和完整性计划就说明了这一点
资金周期。核心教师与 SAGES 保持积极且高效的合作关系
调查人员。此外,DMSA 为其协作、监督和同行支持提供了重要场所。
教职员工;维持效率和生产力;以及数据和质量控制的保证
分析问题。 DMSA 在其运营中融入了持续创新;这项创新的例子
包括针对认知和身体功能的新颖量表开发;扩展匹配算法
案例/控制设计,以及新颖且集成的网络数据管理和开发
分析工具,提高科学发现的可重复性。 DMSA 将提供场地
对这里提出的五个项目进行高效且具有成本效益的信息管理和数据分析;这
我们在初始融资周期中的成功以及我们良好的
开发了研究运营模型。该计划项目具有推动科学发展的巨大潜力
谵妄的发生率,最终导致针对其发生率和后遗症的干预措施的开发。
最终,这个项目具有巨大的潜力,可以增进我们对谵妄的理解,并
制定更有效的策略来预防和治疗谵妄及相关病症,
并发症。 DMSA 将在其成功中发挥关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Glenn Travison其他文献
Thomas Glenn Travison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Glenn Travison', 18)}}的其他基金
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
湿热老化下的CFRP胶-螺连接结构疲劳失效机理研究
- 批准号:52305160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Minimally-invasive technology for personalized nutritional monitoring
用于个性化营养监测的微创技术
- 批准号:
10693521 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Plans4Care: Personalized Dementia Care On-Demand
Plans4Care:按需个性化痴呆症护理
- 批准号:
10758864 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别: