Systems Pharmacology of Therapeutic and Adverse Responses to ImmuneCheckpoint and Small Molecule Drugs
免疫检查点和小分子药物治疗和不良反应的系统药理学
基本信息
- 批准号:10405812
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAtlasesAwardBehaviorCellsClinicalCloud ComputingCodeCommunitiesCommunity DevelopmentsComputer softwareCoupledCrowdingDNA sequencingDataData SetData StoreDevelopmentDevicesDiagnosisDiseaseDisease ManagementDockingDocumentationEngineeringEnsureEnvironmentEvaluationFoundationsFundingHematoxylin and Eosin Staining MethodHistologyHourHumanImageImage AnalysisImaging TechniquesImmuneImmunohistochemistryImmunotherapyIndividualInternationalLaboratoriesLanguageLateralLicensingLocationMeasuresMemoryMetadataMethodsMicroscopyMolecularMorphologyMovementMusOutputParentsPerformancePharmaceutical PreparationsPharmacologyProcessPropertyProteinsPublic DomainsRNAResearchResolutionResourcesRunningSpecimenStagingStandardizationStructureSystemTestingTherapeuticTimeTissue imagingTissuesTranslational ResearchTranslationsUnited States National Institutes of HealthUpdateVisualVisualizationVisualization softwarealgorithmic methodologiesbasecellular imagingcloud basedcloud platformcostdisease diagnosisfile formatflexibilityhuman imaginghuman modelimage processingimage visualizationimmune checkpointimprovedinsightinteroperabilitymicroscopic imagingmouse modelmultiplexed imagingopen sourceperformance testspreservationpreventprototypequality assuranceresponsesmall moleculesymposiumtargeted treatmenttumortumor initiationtumor microenvironmentwhole slide imaging
项目摘要
SUMMARY ABSTRACT
Single cell RNA profiling and DNA sequencing has revolutionized our understanding of the tumor
microenvironment (TME) but such data lacks the spatial context and morphological information found in
images. Histology makes extensive use of morphology, and in a clinical setting provides the primary means of
diagnosing disease and managing treatment. However, relatively little molecular insight can be obtained from
classical Hematoxylin and Eosin (H&E) or immunohistochemistry. These considerations have led to the recent
development of multiple methods for performing highly multiplexed tissue imaging. It allows the properties of
single cells to be determined in a preserved 3D environment in humans and mouse models. In a research
setting, multiplexed imaging provides new insight into molecular mechanisms of tumor initiation, progression,
immune editing, and escape. In a clinical setting, high-plex imaging promises to augment the traditional
histopathological diagnosis of disease with molecular information needed to guide use of targeted and
immuno-therapies. Multiple high-plex tissue images yield subcellular resolution data on 20-100 proteins or
other biomolecules on resolvable structures having spatial scales from 100 nm to over 1 cm in specimens as
large as 5 cm2. These images contain 106 to 107 cells, encoded in up to 1 TB of data.
The primary barrier to wider use of high-plex imaging centers on the computational challenges associated with
processing, managing, and disseminating images of this size. Many algorithms and methods have been
developed to process images of cells grown in culture and these provide a foundation for analysis of tissue
images. However, high-plex tissue imaging poses many additional challenges arising from the diversity and
crowding of cells and as well as the size of the data. We have constructed a cloud-deployed pipeline
(MCMICRO) that uses Docker-containers and a NextFlow pipeline to process large-scale tissue images and
generate single-cell data in a standardized format. We propose to reengineering the components of this proof-
of-concept implementation to make it performative and broadly useful. Aim 1 will improve the performance of
individual modules through code profiling and optimization. Aim 2 will complete the general user and
programmer documentation of MCICRO and its modules to enable continued contributions from the open-
source community and to increase interoperability and perform testing. Aim 3 will add modules to MCMICRO
based on existing proof-of concept code available in the public domain. Aim 4 will enable output of pipeline
intermediate and final results - including image data itself - from the cloud without requiring download. These
supplementary aims are directly relevant the approved aims of the parent award. Completing these aims will
involve partial reengineering of existing software modules and evaluation of pipeline performance using real-
world test data that we will release as part of this supplement. All Aims involve executing MCMICRO on
Amazon and Google cloud platforms.
摘要 摘要
单细胞 RNA 分析和 DNA 测序彻底改变了我们对肿瘤的理解
微环境(TME),但此类数据缺乏空间背景和形态信息
图像。组织学广泛使用形态学,在临床环境中提供了研究形态学的主要手段。
诊断疾病和管理治疗。然而,从中获得的分子洞察相对较少。
经典苏木精和曙红 (H&E) 或免疫组织化学。这些考虑导致了最近
开发执行高度多重组织成像的多种方法。它允许以下属性
在人类和小鼠模型中保存的 3D 环境中确定单细胞。在一项研究中
设置,多重成像提供了对肿瘤发生、进展的分子机制的新见解,
免疫编辑和逃脱。在临床环境中,高复数成像有望增强传统的成像技术
疾病的组织病理学诊断需要分子信息来指导靶向和治疗的使用
免疫疗法。多个高复数组织图像可生成 20-100 种蛋白质或
样本中空间尺度从 100 nm 到超过 1 cm 的可解析结构上的其他生物分子
大至5cm2。这些图像包含 106 到 107 个单元,编码为高达 1 TB 的数据。
更广泛使用高复数成像的主要障碍集中在与相关的计算挑战
处理、管理和传播这种尺寸的图像。许多算法和方法已经被
开发用于处理培养细胞的图像,这些为组织分析提供了基础
图像。然而,高复数组织成像由于多样性和多样性而带来了许多额外的挑战。
细胞的拥挤程度以及数据的大小。我们构建了云端部署的管道
(MCMICRO) 使用 Docker 容器和 NextFlow 管道来处理大规模组织图像和
以标准化格式生成单细胞数据。我们建议重新设计这个证明的组成部分-
概念实施,使其具有执行性和广泛实用性。目标 1 将提高性能
通过代码分析和优化来分析各个模块。目标 2 将完成一般用户和
MCICRO 及其模块的程序员文档,以确保开放的持续贡献
源社区并提高互操作性和执行测试。 Aim 3 将向 MCMICRO 添加模块
基于公共领域现有的概念验证代码。目标 4 将启用管道输出
中间和最终结果 - 包括图像数据本身 - 来自云端,无需下载。这些
补充目标与母奖项的批准目标直接相关。完成这些目标将
涉及现有软件模块的部分重新设计以及使用真实的管道性能评估
我们将作为本补充的一部分发布世界测试数据。所有目标都涉及执行 MCMICRO
亚马逊和谷歌云平台。
项目成果
期刊论文数量(114)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms.
可微生物学:使用深度学习进行基于生物物理学和数据驱动的分子机制建模。
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:48
- 作者:AlQuraishi, Mohammed;Sorger, Peter K
- 通讯作者:Sorger, Peter K
Developmental Stage Classification of Embryos Using Two-Stream Neural Network with Linear-Chain Conditional Random Field.
使用具有线性链条件随机场的双流神经网络对胚胎发育阶段进行分类。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lukyanenko, Stanislav;Jang, Won;Wei, Donglai;Struyven, Robbert;Kim, Yoon;Leahy, Brian;Yang, Helen;Rush, Alexander;Ben;Needleman, Daniel;Pfister, Hanspeter
- 通讯作者:Pfister, Hanspeter
Combination treatment optimization using a pan-cancer pathway model.
使用泛癌途径模型优化联合治疗。
- DOI:
- 发表时间:2021-12
- 期刊:
- 影响因子:4.3
- 作者:Schmucker, Robin;Farina, Gabriele;Faeder, James;Fröhlich, Fabian;Saglam, Ali Sinan;Sandholm, Tuomas
- 通讯作者:Sandholm, Tuomas
Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium.
三维空间转录组学揭示了人类类风湿关节炎滑膜中的细胞类型定位。
- DOI:
- 发表时间:2022-02-11
- 期刊:
- 影响因子:5.9
- 作者:Vickovic, Sanja;Schapiro, Denis;Carlberg, Konstantin;Lötstedt, Britta;Larsson, Ludvig;Hildebrandt, Franziska;Korotkova, Marina;Hensvold, Aase H;Catrina, Anca I;Sorger, Peter K;Malmström, Vivianne;Regev, Aviv;Ståhl, Patrik L
- 通讯作者:Ståhl, Patrik L
Copper induces cell death by targeting lipoylated TCA cycle proteins.
铜通过靶向硫酰化 TCA 循环蛋白来诱导细胞死亡。
- DOI:
- 发表时间:2022-03-18
- 期刊:
- 影响因子:0
- 作者:Tsvetkov, Peter;Coy, Shannon;Petrova, Boryana;Dreishpoon, Margaret;Verma, Ana;Abdusamad, Mai;Rossen, Jordan;Joesch;Humeidi, Ranad;Spangler, Ryan D;Eaton, John K;Frenkel, Evgeni;Kocak, Mustafa;Corsello, Steven M;Lutsenko, Svetlana
- 通讯作者:Lutsenko, Svetlana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER Karl SORGER其他文献
PETER Karl SORGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER Karl SORGER', 18)}}的其他基金
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Systems Pharmacology of Therapeutic and Adverse Responses to ImmuneCheckpoint and Small Molecule Drugs
免疫检查点和小分子药物治疗和不良反应的系统药理学
- 批准号:
9886211 - 财政年份:2018
- 资助金额:
$ 25.35万 - 项目类别:
Systems Pharmacology of Therapeutic and Adverse Responses to ImmuneCheckpoint and Small Molecule Drugs
免疫检查点和小分子药物治疗和不良反应的系统药理学
- 批准号:
10343835 - 财政年份:2018
- 资助金额:
$ 25.35万 - 项目类别:
Project 1: Multi-scale modeling of adaptive drug resistance in BRAF-mutant melanoma
项目 1:BRAF 突变黑色素瘤适应性耐药的多尺度建模
- 批准号:
10343839 - 财政年份:2018
- 资助金额:
$ 25.35万 - 项目类别:
Pharmaco Response Signatures and Disease Mechanism
药物反应特征和疾病机制
- 批准号:
9098801 - 财政年份:2014
- 资助金额:
$ 25.35万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别: