Defining the neural basis for persistent obesity
定义持续性肥胖的神经基础
基本信息
- 批准号:10735128
- 负责人:
- 金额:$ 15.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAmericanAmygdaloid structureAttenuatedBehaviorBehavioral ParadigmBrainBrain regionCalciumCellsClustered Regularly Interspaced Short Palindromic RepeatsCodeDataDevelopmentDietDiseaseDopamine D1 ReceptorElectrophysiology (science)FoodFunctional disorderGlutamatesGoalsHeadHippocampusHumanImageImpairmentIndividualLeadLinkLiteratureLong-Term DepressionMalignant NeoplasmsMediatingMental disordersMentorsMentorshipMetabolic DiseasesMicroscopeMissionModelingMolecularMotivationMusNational Institute of Diabetes and Digestive and Kidney DiseasesNeuronsNucleus AccumbensObese MiceObesityOpioid ReceptorOutputPersonsPopulationPostdoctoral FellowPrevalencePropertyPublic HealthResearchResearch SupportResearch TrainingRewardsRodentSourceSubgroupSynapsesSynaptic plasticitySystemTechnical ExpertiseTestingThalamic structureThinnessTrainingUnited StatesVirusWeightWeight Gainbrain basedcareercell typediet-induced obesityeffective therapyexperienceexperimental studyfeedinggenetic manipulationheart disease riskhedonicin vivoin vivo calcium imaginginterestknock-downmembermetabolic ratemouse modelmu opioid receptorsmultidisciplinaryneuralneural circuitneuroimagingneuromechanismnovelobesity treatmentoptogeneticspresynapticpreventprogramsreceptorreward processingsynaptic depressiontargeted treatment
项目摘要
Project Summary/Abstract.
Despite the prevalence of obesity in the United States, how obesity strengthens brain circuits that reinforce
feeding is not known. This K01 proposal will identify specific neural circuits and subcircuit mechanisms that
enhance feeding and are co-opted in obesity. While prior research has focused on obesity-linked adaptations
in brain regions that drive homeostatic feeding, adaptations in brain regions involved in hedonic, motivated
feeding may be dysregulated in obesity and contribute to ongoing food seeking and weight gain. For instance,
the nucleus accumbens (NAc) is a brain region that regulates feeding and reward, and human and rodent
literature have revealed alterations in NAc activity in obesity, along with disrupted NAc synaptic plasticity
mechanisms. Preliminary data in this proposal demonstrates that NAc activity was selectively increased in a
subpopulation of neurons known to invigorate reward, D1-receptor expressing neurons (D1SPNs), in obese mice
during food seeking. Further, inhibiting NAc D1SPNs output decreased food seeking and prevented diet-induced
weight gain. Enhanced D1SPN activity was driven by increased intrinsic excitability and pre-synaptic
glutamatergic drive. Together these data suggest a model in which enhanced excitatory NAc inputs drive food
seeking in obesity. Yet it remains unclear which input(s) is/are responsible for increased NAc activity in obese
mice, whether all NAc D1SPNs are aberrantly activated or if select ensembles drive food seeking, and lastly,
what synaptic mechanisms underlie these adaptations. The central hypothesis of this proposal is that
enhanced excitatory input to NAc D1SPNs drives food seeking and obesity through attenuated synaptic
depression of glutamatergic inputs. The experiments outlined here will use in vivo optogenetics,
electrophysiology, genetic manipulations, novel operant behavioral paradigms, and a mouse model of diet-
induced obesity to test this hypothesis in the following Aims: Aim 1 will determine which NAc input(s) drive food
seeking and weight gain in obese mice. Aim 2 will investigate how select ensembles of NAc D1SPNs that are
activated during food seeking drive enhanced feeding in obesity. Aim 3 will define a potential mechanism
underlying changes in NAc plasticity in obese mice, and determine how such plasticity underlies food seeking
and weight gain. Together, these experiments represent a major step forward towards understanding how
obesity alters brain circuits, and why it so difficult for people to lose weight and keep it off.
项目摘要/摘要。
尽管肥胖在美国盛行,但肥胖如何增强大脑回路,从而强化
喂养未知。该 K01 提案将确定特定的神经回路和子电路机制,
加强喂养并增选肥胖。虽然之前的研究重点是与肥胖相关的适应
在驱动稳态进食的大脑区域中,涉及享乐、动机的大脑区域的适应
肥胖症患者的喂养可能会失调,并导致持续的食物寻求和体重增加。例如,
伏隔核 (NAc) 是调节进食和奖赏的大脑区域,人类和啮齿动物
文献揭示了肥胖中 NAc 活性的变化以及 NAc 突触可塑性的破坏
机制。该提案中的初步数据表明,NAc 活性在
已知可激活肥胖小鼠奖赏的神经元亚群,即表达 D1 受体的神经元 (D1SPN)
在寻找食物的过程中。此外,抑制 NAc D1SPN 输出可减少食物寻找并防止饮食诱发的
体重增加。 D1SPN 活性增强是由内在兴奋性和突触前增强驱动的
谷氨酸能驱动。这些数据共同提出了一个模型,其中增强的兴奋性 NAc 输入驱动食物
寻找肥胖。然而,目前尚不清楚哪些输入导致肥胖者 NAc 活性增加
小鼠,是否所有 NAc D1SPN 都被异常激活,或者是否选择群体驱动食物寻找,最后,
这些适应背后的突触机制是什么?该提案的中心假设是
NAc D1SPN 的兴奋性输入增强,通过减弱的突触驱动食物寻找和肥胖
谷氨酸能输入的抑制。这里概述的实验将使用体内光遗传学,
电生理学、基因操作、新颖的操作行为范式和饮食小鼠模型
诱导肥胖,以在以下目标中检验这一假设:目标 1 将确定哪些 NAc 输入驱动食物
肥胖小鼠的寻求和体重增加。目标 2 将研究如何选择 NAc D1SPN 的集合
在寻找食物期间被激活,促进肥胖症的进食。目标 3 将定义一个潜在的机制
肥胖小鼠 NAc 可塑性的潜在变化,并确定这种可塑性如何成为食物寻求的基础
和体重增加。总之,这些实验代表着在理解如何
肥胖会改变大脑回路,这也是人们减肥和保持体重如此困难的原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bridget Matikainen-Ankney其他文献
Bridget Matikainen-Ankney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bridget Matikainen-Ankney', 18)}}的其他基金
Investigating the persistent effects of obesity on effortful behavior and underlying neural circuits
研究肥胖对努力行为和潜在神经回路的持续影响
- 批准号:
10468004 - 财政年份:2021
- 资助金额:
$ 15.3万 - 项目类别:
The effect of PD-linked LRRK2 mutations on corticostriatal circuits
PD连锁LRRK2突变对皮质纹状体回路的影响
- 批准号:
9124118 - 财政年份:2016
- 资助金额:
$ 15.3万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Paid Sick Leave Mandates and Mental Healthcare Service Use
带薪病假规定和心理保健服务的使用
- 批准号:
10635492 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
- 批准号:
10644648 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Food Security and Cardiovascular and Metabolic Health
粮食安全与心血管和代谢健康
- 批准号:
10735838 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Mechanistic insights of cortical hyperexcitability in ALS
ALS 皮质过度兴奋的机制见解
- 批准号:
10727465 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别: