Cell lineage-based investigation of chemosensory neuron development
基于细胞谱系的化学感应神经元发育研究
基本信息
- 批准号:10373822
- 负责人:
- 金额:$ 23.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAnatomyAnimalsBehaviorBehavior ControlBehavioralBiological AssayCaenorhabditis elegansCell LineageCell NucleusCell membraneCellsChemotaxisComputer softwareCuesDevelopmentDevelopmental BiologyEmbryoEmbryonic DevelopmentEvolutionFluorescence MicroscopyFutureGene ExpressionGene Transfer TechniquesGeneticGenetic ScreeningGenetic TranscriptionHealthHookwormsHumanImageIndividualInvertebratesInvestigationLabelLasersLeadLightLinkMapsModelingMorphologyNematodaNeuroanatomyNeuronsNuclearOdorsOrder ColeopteraOrganismParasitesParasitic nematodePathway interactionsPatternPersonsPheromonePhysiologyProphylactic treatmentRegulationResolutionResource-limited settingSensorySignal TransductionSkinSpecific qualifier valueStrongyloides stercoralisSystems DevelopmentTaste PerceptionTimeTrainingWorkbaseblastomere structurebody positioncellular imagingcontrast imagingconvolutional neural networkdesigndevelopmental geneticsfluorescence imaginggenetic manipulationinsightlight microscopymicroscopic imagingneglected tropical diseasesneural circuitneural networkneuron developmentnovelprogramsreconstructionrelating to nervous systemresponsesocialtooltreatment strategyvertebrate embryos
项目摘要
Project Summary
Signaling from chemosensory neurons regulates changes in animal physiology and behavior in response to
environmental and social cues. Sensory neuroanatomy is so broadly conserved in nematodes that, based on
morphology and cell body position, functionally homologous chemosensory neurons have been identified
across widely divergent nematode genera, including the well-studied free living nematode Caenorhabditis
elegans, the skin-penetrating human parasite Strongyloides stercoralis, and the predatory nematode Pristionchus
pacificus.
Despite this homology, little is known about the conservation of the developmental and genetic programs that
produce individual chemosensory neurons and maintain or differentiate their function. To what extent do
anatomically homologous neurons share conserved chemosensory function? And to what extent does
anatomical homology reflect a common developmental program? We will answer these questions by mapping
the cell lineages that give rise to chemosensory neurons, determining the extent to which positionally
homologous chemosensory neurons are specified by conserved transcriptional regulators, and identifying
conserved chemosensory function. We will achieve this by developing a novel 3D style transfer convolutional
neural network (stCNN) to automate the identification of major cellular features such as the nucleus and cell
membrane in transmitted light imaging with differential interference contrast (DIC). We will then use this tool
to reconstruct the embryonic lineages of S. stercoralis and P. pacificus, map the expression of known regulators of
chemosensory neural identity to these lineages, and assess the conservation of function between homologous
chemosensory neurons by performing laser cell ablations and single-worm chemotaxis assays.
This work has direct relevance to human health, since chemosensation regulates many aspects of development,
physiology, and behavior in S. stercoralis and other human-parasitic nematodes. Parasitic nematodes infect over
a billion people worldwide and cause some of the most common and devastating neglected tropical diseases,
particularly in low-resource settings. Our multi-species approach will allow us to determine which aspects of
nematode chemosensory system development and function are broadly conserved, and which contain species-
specific adaptations that drive species-specific behaviors, including parasitic behaviors. Furthermore, the
automated reconstruction of cell lineages from DIC images will be an enabling tool of broad value. The ability
to map new developmental lineages without transgenesis will be especially transformative in the study of
human-parasitic nematodes such as hookworms that are not amenable to genetic manipulation, and can be
extended to non-nematode species, including early-stage vertebrate embryos.
项目概要
来自化学感应神经元的信号调节动物生理和行为的变化以响应
环境和社会线索。感觉神经解剖学在线虫中如此广泛保守,基于
已鉴定出形态和细胞体位置、功能同源的化学感觉神经元
跨越广泛不同的线虫属,包括经过充分研究的自由生活线虫 Caenorhabditis
线虫、穿透皮肤的人体寄生虫粪类圆线虫和掠食性线虫 Pristionchus
太平洋。
尽管存在这种同源性,但人们对发育和遗传程序的保护知之甚少。
产生单个化学感应神经元并维持或分化其功能。做到什么程度
解剖上同源的神经元共享保守的化学感应功能?以及到什么程度
解剖同源性反映了共同的发育程序?我们将通过映射来回答这些问题
产生化学感应神经元的细胞谱系,决定了位置上的程度
同源化学感应神经元由保守的转录调节因子指定,并识别
保守的化学感应功能。我们将通过开发一种新颖的 3D 风格传输卷积来实现这一目标
神经网络 (stCNN) 自动识别主要细胞特征,例如细胞核和细胞
具有微分干涉衬度 (DIC) 的透射光成像中的膜。然后我们将使用这个工具
重建粪圆线虫和太平洋圆线虫的胚胎谱系,绘制已知调节因子的表达图
这些谱系的化学感应神经同一性,并评估同源之间的功能保守性
通过进行激光细胞消融和单蠕虫趋化测定来观察化学感应神经元。
这项工作与人类健康直接相关,因为化学感觉调节发育的许多方面,
粪圆线虫和其他人类寄生线虫的生理学和行为。寄生线虫感染超过
全世界有十亿人,导致了一些最常见和最具破坏性的被忽视的热带疾病,
特别是在资源匮乏的环境中。我们的多物种方法将使我们能够确定哪些方面
线虫化学感应系统的发育和功能广泛保守,并且包含物种-
驱动物种特定行为的特定适应,包括寄生行为。此外,
根据 DIC 图像自动重建细胞谱系将成为具有广泛价值的工具。能力
在没有转基因的情况下绘制新的发育谱系将在研究中特别具有变革性
人类寄生线虫,例如钩虫,不适合基因操作,可以通过
扩展到非线虫物种,包括早期脊椎动物胚胎。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavak Kirit Shah其他文献
Pavak Kirit Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavak Kirit Shah', 18)}}的其他基金
Lineage-Specific Mechanisms of Cell Cycle Timing Control
细胞周期计时控制的谱系特异性机制
- 批准号:
10715965 - 财政年份:2023
- 资助金额:
$ 23.86万 - 项目类别:
Cell lineage-based investigation of chemosensory neuron development
基于细胞谱系的化学感应神经元发育研究
- 批准号:
10523112 - 财政年份:2021
- 资助金额:
$ 23.86万 - 项目类别:
Understanding the Developmental Mechanisms that Ensure Robustness in Neuronal Patterning
了解确保神经元模式稳健性的发育机制
- 批准号:
10004225 - 财政年份:2019
- 资助金额:
$ 23.86万 - 项目类别:
Understanding the Developmental Mechanisms that Ensure Robustness in Neuronal Patterning
了解确保神经元模式稳健性的发育机制
- 批准号:
10251027 - 财政年份:2019
- 资助金额:
$ 23.86万 - 项目类别:
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A clinical platform for ultrasound-augmented laparoscopy
超声增强腹腔镜临床平台
- 批准号:
10586776 - 财政年份:2023
- 资助金额:
$ 23.86万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 23.86万 - 项目类别:
Determinants of age-induced hearing loss and reversal strategies
年龄引起的听力损失的决定因素和逆转策略
- 批准号:
10496280 - 财政年份:2023
- 资助金额:
$ 23.86万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 23.86万 - 项目类别: