Integrated Platform for Discovery and Validation of Probes that Restore Protein Expression in Single-Gene Causes of Autism and Related Disorders
用于发现和验证可恢复自闭症及相关疾病单基因病因中蛋白质表达的探针的综合平台
基本信息
- 批准号:10371224
- 负责人:
- 金额:$ 29.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-04-04
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAllelesAnimal ModelAutomationBackBiologicalBiological AssayBiologyBrain DiseasesBudgetsChemicalsChildhoodDevelopmentDiseaseDisease modelDoseEnvironmentFundingGenesGeneticGenetic ModelsGoalsGrantHumanIndustrializationLearningLibrariesMagicMusNatureNeurodevelopmental DisorderNeuronsPatientsPharmaceutical PreparationsPhasePhenotypePlant RootsPositioning AttributePrecision therapeuticsProceduresProgress ReportsProteinsPublishingReadingReportingResearchRodentSYNGAP1SeizuresSystemSystems DevelopmentTestingTherapeuticTranslatingTranslationsUnited States National Institutes of HealthValidationVariantWorkassay developmentautism spectrum disorderbasebrain cellcost effectivedesigndisease phenotypedrug candidatedrug discoveryflexibilityhigh throughput screeningimprovedin vivoinnovationminiaturizemouse modelnervous system disorderneuropsychiatric disordernovelpatient populationprotein expressionresponsescale upscreeningsmall molecule librariessubstance usetool
项目摘要
PROJECT SUMMARY
Drug discovery pipelines for neuropsychiatric disorders are dry. One approach to rejuvenating these
pipelines would be to create assays based on relevant disease phenotypes in primary neurons, something that
is currently lacking. However, a scalable assay development platform that is based on bona fide neurons,
remains cost effective, and that can support industrial level high-throughput screening (HTS) does not currently
exist. Over the past eight years (spread across different NIH-sponsored grants), our collaborative group has
created a flexible and scalable primary neuron-based assay development system that is compatible with
industrial-level HTS. Our long-standing goal for this project has been to optimize these procedures and
workflows to support neuron-based HTS phenotypic assays so that they can support very large
screening campaigns of up to 200K compounds.
We are happy to report that progress over the last budget period has pushed us closer toward this
stated goal. We have invented a state-of-the-art, disease-modeling assay created in primary neurons that is
designed to discover compounds that reverse the cellular consequences of genetic haploinsufficiency. Indeed,
a substantial proportion of childhood brain disorders are caused by single autosomal dominant variants
resulting in genetic haploinsufficiency. The rare genetic brain disorders that arise from these variants offer
great potential for translation because the disease mechanism is well-understood (i.e. low protein expression).
Therefore, a rationale precision therapy for treating genetic haploinsufficiency disorders would be to discover
“magic bullet” compounds that raise expression of functional proteins from the remaining undamaged allele
(e.g. “boosting compounds”). In this renewal project, we will employ technical innovations that have unlocked
the scalability of primary neurons for phenotypic HTS. As a proof-of-principle, we will scale-up and
implement an assay that reports reversal of low SynGAP expression in neurons caused by genetic
haploinsufficiency of the SYNGAP1/Syngap1 gene. We will miniaturize an HTS-compatible and disease-
modeling steady-state endogenous SynGAP expression assay so that it is compatible with industrial scale HTS
automation. Once implemented, we will then screen up to 200,000 unique substances using a completely
automated version of the neuron-based SynGAP expression assay. Finally, using a comprehensive multi-stage
biological validation funnel, we will identify and prioritize the most translatable chemical probes that raise
SynGAP protein expression. The overall impact of this project is that discovery of multiple, validated SynGAP
boosting compounds would provide proof-of-principle that our flexible platform is an effective tool for
phenotypic drug discovery for nervous system disorders.
项目概要
神经精神疾病的药物发现渠道枯燥,振兴这些疾病的一种方法。
管道将是根据初级神经元的相关疾病表型创建检测方法,
然而,目前正在开发一个基于真正神经元的可扩展分析开发平台,
仍然具有成本效益,并且可以支持工业级高通量筛选(HTS),目前尚不支持
在过去的八年里(分布在 NIH 资助的不同项目中),我们的合作小组已经存在。
创建了一个灵活且可扩展的基于初级神经元的检测开发系统,该系统与
我们这个项目的长期目标是优化这些程序和
支持基于神经元的 HTS 表型测定的工作流程,以便它们可以支持非常大的
多达 20 万种化合物的筛选活动。
我们很高兴地报告,上一个预算期的进展使我们更接近这一目标
我们发明了一种在初级神经元中创建的最先进的疾病建模测定方法。
旨在发现逆转遗传单倍体不足的细胞后果的化合物。
很大一部分儿童脑部疾病是由单一常染色体显性变异引起的
导致由这些变异引起的罕见遗传性脑部疾病。
由于疾病机制已被充分了解(即低蛋白表达),因此具有巨大的转化潜力。
因此,治疗遗传性单倍体不足性疾病的精准疗法的基本原理是发现
“神奇子弹”化合物可以提高剩余未受损等位基因的功能蛋白表达
(例如“增强化合物”)。在这个更新项目中,我们将采用已解锁的技术创新。
表型 HTS 的初级神经元的可扩展性。作为原理验证,我们将扩大规模并
实施一项检测,报告由遗传引起的神经元中 SynGAP 低表达的逆转
SYNGAP1/Syngap1 基因的单倍体不足我们将小型化 HTS 兼容和疾病-
对稳态内源 SynGAP 表达测定进行建模,使其与工业规模的 HTS 兼容
自动化一旦实施,我们将使用完整的系统筛选多达 200,000 种独特物质。
基于神经元的 SynGAP 表达测定的自动化版本最后,使用全面的多阶段。
生物验证漏斗中,我们将识别并优先考虑最可翻译的化学探针,以提高
SynGAP 蛋白表达 该项目的总体影响是发现了多个经过验证的 SynGAP。
增强化合物将提供原理证明,证明我们的灵活平台是一种有效的工具
神经系统疾病的表型药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Courtney A Miller其他文献
Neurocranial growth in the OIM mouse model of osteogenesis imperfecta
OIM 成骨不全小鼠模型的神经颅骨生长
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tooba S Husain;Jacob C Moore;Lila A Huston;Courtney A Miller;Ashley T Steele;Lauren A Gonzales;Emma K Handler;J. M. Organ;Rachel A Menegaz - 通讯作者:
Rachel A Menegaz
Targeting the cytoskeleton as a therapeutic approach to substance use disorders
靶向细胞骨架作为物质使用障碍的治疗方法
- DOI:
10.1016/j.phrs.2024.107143 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:9.3
- 作者:
Surya P;ey;ey;Courtney A Miller - 通讯作者:
Courtney A Miller
Courtney A Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Courtney A Miller', 18)}}的其他基金
Development of the AI-driven model for anti-SUD drug development based on neuronal plasticity
基于神经元可塑性的人工智能驱动抗SUD药物开发模型的开发
- 批准号:
10467528 - 财政年份:2022
- 资助金额:
$ 29.57万 - 项目类别:
Developing nonmuscle myosin II inhibitors for the treatment of glioblastoma
开发用于治疗胶质母细胞瘤的非肌肉肌球蛋白 II 抑制剂
- 批准号:
10524193 - 财政年份:2021
- 资助金额:
$ 29.57万 - 项目类别:
Developing nonmuscle myosin II inhibitors for the treatment of glioblastoma
开发用于治疗胶质母细胞瘤的非肌肉肌球蛋白 II 抑制剂
- 批准号:
10595852 - 财政年份:2021
- 资助金额:
$ 29.57万 - 项目类别:
Developing nonmuscle myosin II inhibitors for the treatment of glioblastoma
开发用于治疗胶质母细胞瘤的非肌肉肌球蛋白 II 抑制剂
- 批准号:
10557160 - 财政年份:2021
- 资助金额:
$ 29.57万 - 项目类别:
Impact of prenatal opioid exposure on long-range brain circuit connectivity and behavior
产前阿片类药物暴露对长程脑回路连接和行为的影响
- 批准号:
10163154 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别:
Impact of prenatal opioid exposure on long-range brain circuit connectivity and behavior
产前阿片类药物暴露对长程脑回路连接和行为的影响
- 批准号:
10060057 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别:
Myosin II regulation of actin dynamics and the selective vulnerability of methamphetamine- and opioid-associated memory
肌球蛋白 II 调节肌动蛋白动力学以及甲基苯丙胺和阿片类药物相关记忆的选择性脆弱性
- 批准号:
9916255 - 财政年份:2019
- 资助金额:
$ 29.57万 - 项目类别:
Myosin II regulation of actin dynamics and the selective vulnerability of methamphetamine- and opioid-associated memory
肌球蛋白 II 调节肌动蛋白动力学以及甲基苯丙胺和阿片类药物相关记忆的选择性脆弱性
- 批准号:
10533792 - 财政年份:2019
- 资助金额:
$ 29.57万 - 项目类别:
Myosin II regulation of actin dynamics and the selective vulnerability of methamphetamine- and opioid-associated memory
肌球蛋白 II 调节肌动蛋白动力学以及甲基苯丙胺和阿片类药物相关记忆的选择性脆弱性
- 批准号:
10596356 - 财政年份:2019
- 资助金额:
$ 29.57万 - 项目类别:
Integrated Platform for Discovery and Validation of Probes that Restore Protein Expression in Single-Gene Causes of Autism and Related Disorders
用于发现和验证可恢复自闭症及相关疾病单基因病因中蛋白质表达的探针的综合平台
- 批准号:
10597839 - 财政年份:2017
- 资助金额:
$ 29.57万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Molecular mechanism and physiological function of mitochondrial calcium regulation
线粒体钙调节的分子机制及生理功能
- 批准号:
10455701 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别:
Molecular mechanism and physiological function of mitochondrial calcium regulation
线粒体钙调节的分子机制及生理功能
- 批准号:
10192800 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别: