Generating Accurate Estimates of Required Sample Size for Multilevel Implementation Studies in Mental Health
生成心理健康多层次实施研究所需样本量的准确估计
基本信息
- 批准号:10370396
- 负责人:
- 金额:$ 11.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-11 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptionAmericanCaringCharacteristicsClinicalCommunitiesData AnalysesData SetFoundationsFundingFutureHealthIndividualInterventionLiteratureManuscriptsMeasurementMental HealthMental disordersMethodologyMethodsMissionNational Institute of Mental HealthOutcomePartner in relationshipPatient CarePatient-Focused OutcomesPatientsPersonal SatisfactionPilot ProjectsPopulationPredictive FactorProcessProviderPublishingReference ValuesReporterResearchResearch DesignResearch PersonnelResourcesRiskSample SizeSamplingScienceScientistSpeedSystemTestingTranslationsUnited States National Institutes of HealthWorkbehavioral healthcommunity settingcostdesignevidence baseexperiencehealth care qualityhealth care settingsimplementation designimplementation determinantsimplementation researchimplementation scienceimplementation strategyimplementation studyimprovedinterestpatient populationpower analysispredictive modelingpreventstudy characteristicsstudy populationtool
项目摘要
Project Summary
This project fills a major methods gap that prevents investigators from designing studies with accurate esti-
mates of required sample size for multilevel behavioral health implementation studies. Implementation science
is essential to achieving NIMH’s mission. An essential step in designing implementation studies is to conduct a
statistical power analysis to determine the minimum sample size required to statistically detect effects of interest.
Power analyses for implementation research are more complicated because they need to account for (a) patients
nested within providers who are nested within organizations or other systems, and (b) scientific aims that typically
focus on testing (or at a minimum accounting for) cross-level effects of higher-level (e.g., organization, clinician)
implementation determinants or strategies on lower-level (e.g., patient) outcomes. While multilevel power anal-
ysis tools are available to accommodate these types of nested studies, the tools require investigators to have
prior estimates of three key design parameters to determine the proper sample size for their study —intraclass
correlation coefficient (ICC), effect size, and proportion of variance explained by covariates—which are not rou-
tinely available from the published literature and cannot be reliably estimated from small pilot studies. Power
analyses that use inaccurate estimates of these design parameters are highly likely to be either underpowered,
and consequently at-risk of not detecting important effects, or over-powered, and consequently wasteful of lim-
ited resources. Lack of reference values for these parameters is a foundational barrier to the field because even
small changes in design parameters can dramatically alter the effective sample size from N=300 to N=50.
NIMH has funded a large number of implementation studies during the last 10 years (N=140) which provides
an opportunity for us to re-access the datasets from these projects to generate accurate estimates of multilevel
design parameters for behavioral health implementation studies. We will use NIH-RePorter to identify all NIMH-
funded behavioral health implementation studies conducted during the last 10 years and collaborate with PIs to
extract design parameters for targeted implementation and clinical outcomes, which we will summarize and pub-
lish for the field. We will also generate a predictive model that enables PIs to estimate design parameters tailored
to the characteristics of their new studies. Building on our preliminary work within the Penn NIMH ALACRITY
Center, this project will (1) generate pooled estimates and ranges of design parameters (i.e., ICCs, effect sizes,
covariate R2) needed to accurately estimate sample size in multilevel behavioral health implementation studies,
and (2) identify the study characteristics that predict the magnitude of these design parameters. Completion of
this work will remove a ubiquitous methodological barrier that undermines the advancement of implementation
science in behavioral health. The study will contribute to higher quality, more replicable science, more efficient
use of NIMH resources, and higher impact implementation research to improve healthcare quality and well-being
for millions of individuals who experience psychiatric disorders each year.
项目概要
该项目填补了一个主要的方法空白,该空白阻碍了研究人员设计具有准确估计的研究
多层次行为健康实施研究所需样本量的配合。
对于实现 NIMH 的使命至关重要,设计实施研究的一个重要步骤是进行一项研究。
统计功效分析以确定密切检测感兴趣的影响所需的最小样本量。
研究的功效分析实施更加复杂,因为它们需要考虑 (a) 患者
嵌套在组织或其他系统中的提供者中,以及(b)通常具有的科学目标
专注于测试(或至少考虑)更高级别(例如组织、临床医生)的跨级别影响
低水平(例如患者)结果的实施决定因素或策略。
ysis 工具可用于适应这些类型的嵌套研究,这些工具要求研究人员
事先估计三个关键设计参数,以确定其研究的适当样本量——组内
相关系数(ICC)、效应大小和协变量解释的方差比例——这些不是鲁棒性的
可以从已发表的文献中获得,并且无法通过小型试点研究进行可靠估计。
使用这些设计参数的不准确估计进行的分析很可能是动力不足,
因此存在无法检测到重要影响或过度强大的风险,从而浪费了有限的时间
缺乏这些参数的参考值是该领域的基本障碍,因为即使
设计参数的微小变化可以显着地将有效样本量从 N=300 更改为 N=50。
NIMH 在过去 10 年中资助了大量实施研究(N=140),其中提供了
我们有机会重新访问这些项目的数据集,以生成准确的多层次估计
我们将使用 NIH-RePorter 来识别所有 NIMH- 的行为健康研究实施的设计参数。
资助过去 10 年进行的行为实施健康研究,并与 PI 合作
提取设计参数以进行有针对性的总结和实施临床结果,我们将并发布这些参数
我们还将生成一个预测模型,使 PI 能够估计定制的设计参数。
以我们宾夕法尼亚大学 NIMH ALACRITY 的前期工作为基础,了解他们的新研究的特点。
中心,该项目将 (1) 生成设计参数的汇总估计和范围(即 ICC、效应大小、
协变量 R2)需要准确估计多层次行为健康实施研究中的样本量,
(2) 确定预测这些设计参数大小的研究特征。
这项工作将消除阻碍实施进展的普遍存在的方法障碍
该研究将有助于提高科学质量、提高可复制性、提高效率。
利用 NIMH 资源和影响力更大的实施研究来提高医疗保健质量和福祉
每年有数百万遭受精神疾病的人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel J. Williams其他文献
Monitoring Solar Home Systems With Pulse Width Modulation Charge Control
使用脉宽调制充电控制监控家用太阳能系统
- DOI:
10.1115/1.4003586 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:2.3
- 作者:
Nathaniel J. Williams;E. Van Dyk;F. J. Vorster - 通讯作者:
F. J. Vorster
Implementation leadership and implementation climate in context: A single organization intrinsic case study for implementation of digital measurement-based care
背景下的实施领导力和实施氛围:实施基于数字测量的护理的单一组织内在案例研究
- DOI:
10.1177/26334895241236680 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0
- 作者:
Marisa Sklar;Mark G. Ehrhart;Nallely Ramirez;Kristine Carandang;Nicolle Kuhn;Ana Day;Gregory A Aarons;Nathaniel J. Williams - 通讯作者:
Nathaniel J. Williams
Institutional influence on power sector investments: A case study of on- and off-grid energy in Kenya and Tanzania
制度对电力部门投资的影响:肯尼亚和坦桑尼亚并网和离网能源的案例研究
- DOI:
10.1016/j.erss.2018.04.011 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:6.7
- 作者:
Brian Sergi;M. Babcock;Nathaniel J. Williams;J. Thornburg;Aviva Loew;Rebecca E. Ciez - 通讯作者:
Rebecca E. Ciez
Sustainable deimplementation of continuous pulse oximetry monitoring in children hospitalized with bronchiolitis: study protocol for the Eliminating Monitor Overuse (EMO) type III effectiveness-deimplementation cluster-randomized trial
因细支气管炎住院儿童连续脉搏血氧饱和度监测的可持续失效:消除监测器过度使用(EMO)III型有效性-失效整群随机试验的研究方案
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:7.2
- 作者:
Christopher P. Bonafide;R. Xiao;A. Schondelmeyer;A. R. Pettit;Patrick W. Brady;C. Landrigan;C. Wolk;Zuleyha Cidav;Halley Ruppel;Naveen Muthu;Nathaniel J. Williams;Enrique F Schisterman;Canita R Brent;Kimberly Albanowski;R. Beidas;Prabi Emily Michelle Kate Patty Samantha Alyssa Monique Rajbhandari Knuth Bailey Lucey Stoeck House Silver;Prabi Rajbhandari;Emily Knuth;M. Bailey;Kate Lucey;Patty Stoeck;Samantha A House;A. Silver;M. Naifeh;Michael J Tchou;A. Tyler;Vivian Lee;Erin Cummings;Clifton Lee;Kyrie L. Shomaker;Alexandra J. Mihalek;Courtney Solomon;Raymond Parlar;Kathleen T Berg;Nick Ryan;Tina Halley;Mary M Orr;Tracey Liljestrom;Erin Preloger;Padmavathy Parthasarathy;Rashida Shakir;Andrew Chu;Morgan E Greenfield;Julianne Prasto;Ann Le;Kimberly Monroe;Andrea M Lauffer;M. Carter;Kamilah Halmon;Glenda Huff;K. Patel;Jennie G. Ono;Alan C. Schroeder;Gregory ( Greg) Plemmons;M. Perry;Sumeet L Banker;Jennifer Lee;R. Willer;Begem Lee;Kyung E Rhee;Richelle M. Baker;P. F. Gregory;V. Parikh;Mini Wallace;Stephen Edwards;Lisa Beckner;Michelle Y. Hamline;Lauren G. Solan;L. Cioffredi;Scarlett Johnson;J. Andrake;N. Webb;Adam K. Berkwitt - 通讯作者:
Adam K. Berkwitt
Eliminating Monitor Overuse (EMO) type III effectiveness-deimplementation cluster-randomized trial: Statistical analysis plan
消除监视器过度使用 (EMO) III 型有效性-取消整群随机试验:统计分析计划
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
Rui Xiao;Christopher P. Bonafide;Nathaniel J. Williams;Zuleyha Cidav;C. Landrigan;Jennifer Faerber;Spandana Makeneni;C. Wolk;A. Schondelmeyer;Patrick W Brady;R. Beidas;E. Schisterman - 通讯作者:
E. Schisterman
Nathaniel J. Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel J. Williams', 18)}}的其他基金
Generating Accurate Estimates of Required Sample Size for Multilevel Implementation Studies in Mental Health
生成心理健康多层次实施研究所需样本量的准确估计
- 批准号:
10188231 - 财政年份:2021
- 资助金额:
$ 11.76万 - 项目类别:
Randomized trial of a leadership and organizational change strategy to improve the implementation and sustainment of digital measurement-based care in youth mental health services
对领导和组织变革策略进行随机试验,以改善青少年心理健康服务中基于数字测量的护理的实施和维持
- 批准号:
10166946 - 财政年份:2019
- 资助金额:
$ 11.76万 - 项目类别:
Randomized trial of a leadership and organizational change strategy to improve the implementation and sustainment of digital measurement-based care in youth mental health services
对领导和组织变革策略进行随机试验,以改善青少年心理健康服务中基于数字测量的护理的实施和维持
- 批准号:
10405594 - 财政年份:2019
- 资助金额:
$ 11.76万 - 项目类别:
Randomized trial of a leadership and organizational change strategy to improve the implementation and sustainment of digital measurement-based care in youth mental health services
对领导和组织变革策略进行随机试验,以改善青少年心理健康服务中基于数字测量的护理的实施和维持
- 批准号:
10265809 - 财政年份:2019
- 资助金额:
$ 11.76万 - 项目类别:
Understanding the impact of organizational implementation strategies on EBT use
了解组织实施策略对 EBT 使用的影响
- 批准号:
8455017 - 财政年份:2012
- 资助金额:
$ 11.76万 - 项目类别:
Understanding the impact of organizational implementation strategies on EBT use
了解组织实施策略对 EBT 使用的影响
- 批准号:
8551405 - 财政年份:2012
- 资助金额:
$ 11.76万 - 项目类别:
Understanding the impact of organizational implementation strategies on EBT use
了解组织实施策略对 EBT 使用的影响
- 批准号:
8722035 - 财政年份:2012
- 资助金额:
$ 11.76万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multi-level interventions for addressing tobacco cessation and SDOH in Community Health Centers (CHCs)
解决社区卫生中心 (CHC) 戒烟和 SDOH 问题的多层次干预措施
- 批准号:
10661440 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Person-centered quality measurement and management in a system for addictions treatment in New York State
纽约州成瘾治疗系统中以人为本的质量测量和管理
- 批准号:
10772463 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Effects of Medicaid IMD SUD waiver on access to addiction treatment
医疗补助 IMD SUD 豁免对获得成瘾治疗的影响
- 批准号:
10726979 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Strategies to improve Utilization of Post-overdose Evidence-based Risk mitigation among Non-fatal Overdoses in VA (SUPER NOVA)
提高药物过量后利用率的策略 基于证据的 VA 非致命药物过量风险缓解策略 (SUPER NOVA)
- 批准号:
10425936 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别: