Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
基本信息
- 批准号:10365746
- 负责人:
- 金额:$ 61.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAllelesAnimal ModelBiologyBone GrowthBrainCellsChotzen SyndromeClustered Regularly Interspaced Short Palindromic RepeatsComplexCongenital AbnormalityCongenital abnormal SynostosisCraniosynostosisDNA Sequence AlterationDataDefectDevelopmentEmbryoEtiologyExcisionFamilyFetal DevelopmentFishesFunctional disorderFundingGenesGeneticGenomicsGoalsGrowthHumanHuman GeneticsImageImpaired cognitionIndividualInfantIntellectual functioning disabilityJoint structure of suture of skullJointsLeftLightLinkLive BirthMeasurementModelingMolecularMonitorMusMutagenesisMutationOperative Surgical ProceduresOrthologous GeneOsteoblastsOsteogenesisPatientsPhenocopyPostoperative PeriodProcessRegulationRepeat SurgeryReporterRoleSignal TransductionSourceStructureSurgical suturesTWIST1 geneTestingTransgenic OrganismsUp-RegulationValidationWorkZebrafishbaseblastomere structurebonecell typecomparativecoronal suturecoronal synostosiscraniofacialcraniumearly childhoodflexibilityin vivomolecular markermouse modelmutantpostnatalprematurepreservationpreventprogenitorprogramsquantitative imagingsingle-cell RNA sequencingstem cellssuture fusiontargeted treatmenttherapy developmenttooltranscription factortranscriptome
项目摘要
During fetal development and early childhood, growth of the bony skull accommodates a rapid expansion of the
underlying brain. This is accomplished first by progenitors that grow the individual skull bones, and then by stem
cells residing in the flexible bony joints called sutures. In a common birth defect called craniosynostosis (1 in
2000 live births), loss of the cranial sutures results in bony fusions that impede brain growth, thus leading to
cognitive impairment if left untreated. Surgical correction involves invasive and risky surgeries on infants to break
apart the fused bones. Unfortunately, the skull bones often re-fuse, necessitating repeated surgeries. There is
thus a critical need to better understand the causes of craniosynostosis, such that we can develop therapies that
minimize repeated surgical interventions. In the previous funding cycle, we generated and characterized the first
zebrafish model of Saethre-Chotzen Syndrome, which preferentially affects the coronal suture. In so doing, we
pinpointed early changes in the growth rates of the embryonic skull bones as a major cause of suture fusions. In
this renewal we address three outstanding questions in the field of craniosynostosis. In Aim 1, we investigate
the embryonic origins of the suture stem cells that grow and maintain the skull. While suture stem cells have
been studied at postnatal stages, whether they arise from progenitors at the tips of growing bones, or alternatively
from migrating cells, remains debated. By generating the first single-cell transcriptomes of the developing mouse
and zebrafish coronal sutures, we have uncovered conserved embryonic cell types and molecular markers for
suture progenitors. Using new lineage tracing tools in mouse and fish, we will test that bone front progenitors
expressing ETS-family transcription factors are the origin of suture-resident stem cells. In Aim 2, we investigate
how the Saethre-Chotzen genes Twist1 and Tcf12 regulate the transition from bone front progenitors to suture
stem cells. Preliminary data reveal that Twist1 and Tcf12 upregulate the Bmp antagonists Grem1 and Noggin
during suture formation, suggesting that tighter regulation of Bmp signaling is essential to slow bone growth and
prevent fusions. Using mouse conditional genetics and new zebrafish mutants, we will test that direct regulation
of Grem1 and Noggin expression by Twist1 and Tcf12 is necessary and sufficient for regulated bone growth and
normal suture formation. In Aim 3, we address a central mystery of the craniosynostosis field – why do particular
mutations tend to affect only particular sutures? By generating and contrasting new zebrafish models for 11
coronal and 7 midline craniosynostosis genes, we will test whether coronal suture formation is particularly
sensitive to mutations that perturb the rate of bone growth. To do so, we will make use of new zebrafish
transgenic reporters that allow quantitative in vivo measurements of osteoblast addition and suture formation. A
strength of the proposal is the unique team of experts in zebrafish, mouse, and human craniofacial genetics. By
using model organisms to understand the developmental bases for diverse types of craniosynostosis, we strive
toward developing more targeted treatments for craniosynostosis patients with particular genetic mutations.
在胎儿发育和幼儿期,颅骨的生长适应了颅骨的快速扩张。
这首先是由生长单个颅骨的祖细胞完成的,然后是由干细胞完成的。
存在于称为缝线的灵活骨关节中的细胞存在于一种称为颅缝早闭的常见出生缺陷中。
2000 活产),颅缝丢失导致骨融合,阻碍大脑生长,从而导致
如果不及时治疗,认知障碍会涉及对婴儿进行侵入性且危险的手术。
不幸的是,头骨经常会重新融合,需要重复手术。
因此,迫切需要更好地了解颅缝早闭的原因,以便我们能够开发出治疗方法
在上一个资助周期中,我们生成并描述了第一个手术干预措施。
Saethre-Chotzen 综合征的斑马鱼模型,它优先影响冠状缝。
确定胚胎颅骨生长速度的早期变化是缝线融合的主要原因。
此次更新我们解决了颅缝早闭领域的三个突出问题。在目标 1 中,我们进行了调查。
生长和维持颅骨的缝合干细胞的胚胎起源,而缝合干细胞具有
在出生后阶段进行了研究,无论它们是否来自生长骨骼尖端的祖细胞,或者
通过生成发育中的小鼠的第一个单细胞转录组,仍然存在争议。
和斑马鱼冠状缝,我们发现了保守的胚胎细胞类型和分子标记
使用小鼠和鱼的新谱系追踪工具,我们将测试骨前祖细胞。
表达 ETS 家族转录因子是缝线驻留干细胞的起源。在目标 2 中,我们进行了研究。
Saethre-Chotzen 基因 Twist1 和 Tcf12 如何调节从骨前祖细胞到缝合线的转变
初步数据显示,Twist1 和 Tcf12 上调 Bmp 拮抗剂 Grem1 和 Noggin。
在缝合线形成过程中,表明更严格地调节 Bmp 信号对于减缓骨生长和
使用小鼠条件遗传学和新的斑马鱼突变体,我们将测试直接调节
Twist1 和 Tcf12 的 Grem1 和 Noggin 表达对于调节骨生长和
在目标 3 中,我们解决了颅缝早闭领域的一个核心谜团——为什么会出现特殊的情况。
通过生成并对比 11 种新的斑马鱼模型,突变是否倾向于只影响特定的缝合线?
冠状和7个中线颅缝早闭基因,我们将测试冠状缝的形成是否特别
对扰乱骨骼生长速度的突变敏感为此,我们将利用新的斑马鱼。
转基因生产可以定量体内测量成骨细胞的添加和缝合线的形成。
该提案的优势在于由斑马鱼、小鼠和人类颅面遗传学专家组成的独特团队。
使用模型生物体来了解不同类型颅缝早闭的发育基础,我们努力
致力于为具有特定基因突变的颅缝早闭患者开发更有针对性的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gage D Crump其他文献
Gage D Crump的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gage D Crump', 18)}}的其他基金
Modular control of jaw tendon specification by the Nr5a2 orphan nuclear receptor
Nr5a2 孤儿核受体对颌肌腱规范的模块化控制
- 批准号:
10227394 - 财政年份:2020
- 资助金额:
$ 61.88万 - 项目类别:
Modular control of jaw tendon specification by the Nr5a2 orphan nuclear receptor
Nr5a2 孤儿核受体对颌肌腱规范的模块化控制
- 批准号:
10115696 - 财政年份:2020
- 资助金额:
$ 61.88万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
9460833 - 财政年份:2017
- 资助金额:
$ 61.88万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10783456 - 财政年份:2017
- 资助金额:
$ 61.88万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10840025 - 财政年份:2017
- 资助金额:
$ 61.88万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10641883 - 财政年份:2017
- 资助金额:
$ 61.88万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10426306 - 财政年份:2017
- 资助金额:
$ 61.88万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10200763 - 财政年份:2017
- 资助金额:
$ 61.88万 - 项目类别:
Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
- 批准号:
10493274 - 财政年份:2016
- 资助金额:
$ 61.88万 - 项目类别:
Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
- 批准号:
10653230 - 财政年份:2016
- 资助金额:
$ 61.88万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 61.88万 - 项目类别:
Developing a new platform to characterize and treat disease-associated polycystin variants
开发一个新平台来表征和治疗与疾病相关的多囊蛋白变体
- 批准号:
10726754 - 财政年份:2023
- 资助金额:
$ 61.88万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 61.88万 - 项目类别:
Discovering miR6891-5p: guardian of XX allelic balance and barrier to Sjögren’s syndrome pathogenesis
发现 miR6891-5p:XX 等位基因平衡的守护者和干燥综合征发病机制的障碍
- 批准号:
10767679 - 财政年份:2023
- 资助金额:
$ 61.88万 - 项目类别: