Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
基本信息
- 批准号:10653230
- 负责人:
- 金额:$ 61.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAllelesBiologyBone GrowthBrainCellsChotzen SyndromeClustered Regularly Interspaced Short Palindromic RepeatsComplexCongenital AbnormalityCongenital abnormal SynostosisCraniosynostosisDNA Sequence AlterationDataDefectDevelopmentEmbryoEtiologyExcisionFamilyFetal DevelopmentFishesFunctional disorderFundingGenesGeneticGenomicsGoalsGrowthHumanHuman GeneticsImageImpaired cognitionIndividualInfantIntellectual functioning disabilityJoint structure of suture of skullJointsLeftLegal patentLinkLive BirthMeasurementModelingMolecularMonitorMusMutagenesisMutationOperative Surgical ProceduresOrthologous GeneOsteoblastsOsteogenesisPatientsPhenocopyPostoperative PeriodProcessRegulationRepeat SurgeryReporter GenesRoleSignal TransductionSourceStructureSurgical suturesTWIST1 geneTestingTransgenic OrganismsUp-RegulationValidationWorkZebrafishantagonistbasebonecell motilitycell typecomparativecoronal suturecoronal synostosiscraniofacialcraniumearly childhoodembryo cellflexibilityin vivomodel organismmolecular markermouse modelmutantpostnatalprematurepreservationpreventprogenitorprogramsquantitative imagingrestraintsingle-cell RNA sequencingstem cellssuture fusiontargeted treatmenttherapy developmenttooltranscription factortranscriptome
项目摘要
During fetal development and early childhood, growth of the bony skull accommodates a rapid expansion of the
underlying brain. This is accomplished first by progenitors that grow the individual skull bones, and then by stem
cells residing in the flexible bony joints called sutures. In a common birth defect called craniosynostosis (1 in
2000 live births), loss of the cranial sutures results in bony fusions that impede brain growth, thus leading to
cognitive impairment if left untreated. Surgical correction involves invasive and risky surgeries on infants to break
apart the fused bones. Unfortunately, the skull bones often re-fuse, necessitating repeated surgeries. There is
thus a critical need to better understand the causes of craniosynostosis, such that we can develop therapies that
minimize repeated surgical interventions. In the previous funding cycle, we generated and characterized the first
zebrafish model of Saethre-Chotzen Syndrome, which preferentially affects the coronal suture. In so doing, we
pinpointed early changes in the growth rates of the embryonic skull bones as a major cause of suture fusions. In
this renewal we address three outstanding questions in the field of craniosynostosis. In Aim 1, we investigate
the embryonic origins of the suture stem cells that grow and maintain the skull. While suture stem cells have
been studied at postnatal stages, whether they arise from progenitors at the tips of growing bones, or alternatively
from migrating cells, remains debated. By generating the first single-cell transcriptomes of the developing mouse
and zebrafish coronal sutures, we have uncovered conserved embryonic cell types and molecular markers for
suture progenitors. Using new lineage tracing tools in mouse and fish, we will test that bone front progenitors
expressing ETS-family transcription factors are the origin of suture-resident stem cells. In Aim 2, we investigate
how the Saethre-Chotzen genes Twist1 and Tcf12 regulate the transition from bone front progenitors to suture
stem cells. Preliminary data reveal that Twist1 and Tcf12 upregulate the Bmp antagonists Grem1 and Noggin
during suture formation, suggesting that tighter regulation of Bmp signaling is essential to slow bone growth and
prevent fusions. Using mouse conditional genetics and new zebrafish mutants, we will test that direct regulation
of Grem1 and Noggin expression by Twist1 and Tcf12 is necessary and sufficient for regulated bone growth and
normal suture formation. In Aim 3, we address a central mystery of the craniosynostosis field – why do particular
mutations tend to affect only particular sutures? By generating and contrasting new zebrafish models for 11
coronal and 7 midline craniosynostosis genes, we will test whether coronal suture formation is particularly
sensitive to mutations that perturb the rate of bone growth. To do so, we will make use of new zebrafish
transgenic reporters that allow quantitative in vivo measurements of osteoblast addition and suture formation. A
strength of the proposal is the unique team of experts in zebrafish, mouse, and human craniofacial genetics. By
using model organisms to understand the developmental bases for diverse types of craniosynostosis, we strive
toward developing more targeted treatments for craniosynostosis patients with particular genetic mutations.
在胎儿发育和幼儿期,颅骨的生长适应了颅骨的快速扩张。
这首先是由生长单个颅骨的祖细胞完成的,然后是由干细胞完成的。
存在于称为缝线的灵活骨关节中的细胞存在于一种称为颅缝早闭的常见出生缺陷中。
2000 活产),颅缝丢失导致骨融合,阻碍大脑生长,从而导致
如果不及时治疗,认知障碍会涉及对婴儿进行侵入性且危险的手术。
不幸的是,头骨经常会重新融合,需要重复手术。
因此,迫切需要更好地了解颅缝早闭的原因,以便我们能够开发出治疗方法
在上一个资助周期中,我们生成并描述了第一个手术干预措施。
Saethre-Chotzen 综合征的斑马鱼模型,它优先影响冠状缝。
确定胚胎颅骨生长速度的早期变化是缝线融合的主要原因。
此次更新我们解决了颅缝早闭领域的三个突出问题。在目标 1 中,我们进行了调查。
生长和维持颅骨的缝合干细胞的胚胎起源,而缝合干细胞具有
在出生后阶段进行了研究,无论它们是否来自生长骨骼尖端的祖细胞,或者
通过生成发育中的小鼠的第一个单细胞转录组,仍然存在争议。
和斑马鱼冠状缝,我们发现了保守的胚胎细胞类型和分子标记
使用小鼠和鱼的新谱系追踪工具,我们将测试骨前祖细胞。
表达 ETS 家族转录因子是缝线驻留干细胞的起源。在目标 2 中,我们进行了研究。
Saethre-Chotzen 基因 Twist1 和 Tcf12 如何调节从骨前祖细胞到缝合线的转变
初步数据显示,Twist1 和 Tcf12 上调 Bmp 拮抗剂 Grem1 和 Noggin。
在缝合线形成过程中,表明更严格地调节 Bmp 信号对于减缓骨生长和
使用小鼠条件遗传学和新的斑马鱼突变体,我们将测试直接调节
Twist1 和 Tcf12 的 Grem1 和 Noggin 表达对于调节骨生长和
在目标 3 中,我们解决了颅缝早闭领域的一个核心谜团——为什么会出现特殊的情况。
通过生成并对比 11 种新的斑马鱼模型,突变是否倾向于只影响特定的缝合线?
冠状和7个中线颅缝早闭基因,我们将测试冠状缝的形成是否特别
对扰乱骨骼生长速度的突变敏感为此,我们将利用新的斑马鱼。
转基因生产可以定量体内测量成骨细胞的添加和缝合线的形成。
该提案的优势在于由斑马鱼、小鼠和人类颅面遗传学专家组成的独特团队。
使用模型生物体来了解不同类型颅缝早闭的发育基础,我们努力
致力于为具有特定基因突变的颅缝早闭患者开发更有针对性的治疗方法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zebrafish prrx1a mutants have normal hearts.
斑马鱼 prrx1a 突变体具有正常的心脏。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:64.8
- 作者:Tessadori, Federico;de Bakker, Dennis E M;Barske, Lindsey;Nelson, Nellie;Algra, Hermine A;Willekers, Sven;Nichols, James T;Crump, J Gage;Bakkers, Jeroen
- 通讯作者:Bakkers, Jeroen
BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair.
BMP-IHH 介导的间充质干细胞和破骨细胞之间的相互作用支持颅骨骨稳态和修复。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:12.7
- 作者:Guo, Yuxing;Yuan, Yuan;Wu, Ling;Ho, Thach;Jing, Junjun;Sugii, Hideki;Li, Jingyuan;Han, Xia;Feng, Jifan;Guo, Chuanbin;Chai, Yang
- 通讯作者:Chai, Yang
BMP Signaling in Regulating Mesenchymal Stem Cells in Incisor Homeostasis.
BMP 信号传导调节门牙稳态中的间充质干细胞。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:7.6
- 作者:Shi, C;Yuan, Y;Guo, Y;Jing, J;Ho, T V;Han, X;Li, J;Feng, J;Chai, Y
- 通讯作者:Chai, Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gage D Crump其他文献
Gage D Crump的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gage D Crump', 18)}}的其他基金
Modular control of jaw tendon specification by the Nr5a2 orphan nuclear receptor
Nr5a2 孤儿核受体对颌肌腱规范的模块化控制
- 批准号:
10227394 - 财政年份:2020
- 资助金额:
$ 61.66万 - 项目类别:
Modular control of jaw tendon specification by the Nr5a2 orphan nuclear receptor
Nr5a2 孤儿核受体对颌肌腱规范的模块化控制
- 批准号:
10115696 - 财政年份:2020
- 资助金额:
$ 61.66万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
9460833 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10783456 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10840025 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10641883 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10426306 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Progenitor Regulation in Craniofacial Development and Regeneration
颅面发育和再生中的祖细胞调节
- 批准号:
10200763 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
- 批准号:
10493274 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Molecular and Cellular Basis of Craniosynostosis
颅缝早闭的分子和细胞基础
- 批准号:
10365746 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 61.66万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:
Examining the Effectiveness of the Early Start Denver Model in Community Programs serving Young Autistic Children
检查早期开始丹佛模式在为自闭症儿童服务的社区项目中的有效性
- 批准号:
10725999 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:
Development of M-Drive: A recyclable Mucor-optimized CAS9 gene-drive system cable of multi-target gene editing
开发M-Drive:可回收的多靶点基因编辑的毛霉优化CAS9基因驱动系统电缆
- 批准号:
10727359 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:
Plasma neurofilament light chain as a potential disease monitoring biomarker in Wolfram syndrome
血浆神经丝轻链作为 Wolfram 综合征潜在疾病监测生物标志物
- 批准号:
10727328 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别: