Inhalation Therapy Platform for Coronavirus Infection Treatment

治疗冠状病毒感染的吸入治疗平台

基本信息

  • 批准号:
    10364186
  • 负责人:
  • 金额:
    $ 63.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-17 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT The newly emerged SARS-CoV-2 coronavirus has demonstrated the deadly threat of pulmonary pathogens in an exposure-naïve world with no existing vaccines or therapeutics at the ready. The development of effective vaccines has provided key prophylactic products, but therapeutics remain important due to slow and incomplete world coverage, along with emergence of resistance variants. There is especially a need for polytherapy platforms that can be deployed in formats amenable to global settings, and need for platforms that can be rapidly developed against future pulmonary threats. This project aims to develop a versatile inhalable therapeutic platform against COVID-19 disease and future coronaviruses. It is designed for nebulizer and distributable inhalation devices to maximize drug activity in the lung. The polymeric prodrug platform has recently shown strong potentiating activity against highly lethal and antimicrobial-resistant bacterial lung infections. These “drugamer” therapeutics improve the activity of pulmonary drugs by targeting them to specific cell reservoirs in the lung with high and extended dosing profiles. The inhalable platform could be used by infected patients before hospitalization, to reduce administrations by patients in crowded hospitals, and contribute a key distributable therapeutic and prophylactic modality that is needed to protect caregivers and disadvantaged populations. The proposal is structured around 4 specific aims: (1) Develop remdesivir and baracitinib as first drugamer candidates that exploit the lung macrophage as a reservoir to achieve extended dosing, as well as targeted designs against lung epithelium viral reservoirs. Remdesivir and baracitinib prodrug monomers will be developed with corresponding drugamer designs with mannose and peptide targeting ligands for the alveolar macrophage and epithelial compartments, respectively; (2) Characterize and optimize the drugamer candidates by criteria of how they load drugs into the lung macrophage and epithelial cells with extended dosing times. This will lead to better understanding of how to optimize targeting strategies in the lung for future antiviral development. The mechanisms will be studied by using quantitative LC-MS pharmacokinetics characterization and safety characterization using lung inflammatory response assessments; (3) Assess and optimize drugamer activity against SARS-CoV-2 using the hACE2 mouse model. Viral load and survival studies will be used to characterize and develop optimized drugamer and drugamer combinations that could in the future be carried forward into preclinical development. Compared to current formulation approaches, the drugamers exhibit higher drug loading, the ability to co-formulate widely varying drugs for polytherapy, and individually tailorable drug PK profiles that minimize burst release. The modularity of the platform, together with scaled and rapid manufacturing response attributes, will allow diverse incorporation of other drugs as combinations. These favorable platform attributes motivate this project to develop a new repertoire of current and future coronavirus therapeutic products.
项目概要/摘要 新出现的 SARS-CoV-2 冠状病毒已证明肺部病原体的致命威胁 一个未经暴露的世界,没有现成的疫苗或治疗方法。 疫苗提供了关键的预防产品,但由于进展缓慢且不完整,治疗方法仍然很重要 世界范围的覆盖,以及耐药变种的出现,特别需要多疗法。 可以以适合全球环境的格式部署的平台,并且需要可以快速部署的平台 该项目旨在开发一种多功能吸入疗法。 针对 COVID-19 疾病和未来冠状病毒的平台它专为雾化器和可分配产品而设计。 最近展示了能够最大限度地提高肺部药物活性的吸入装置。 对高致命性和抗菌药物耐药性细菌肺部感染具有强大的增强活性。 “药物玩家”疗法通过将肺部药物靶向特定的细胞储存库来提高肺部药物的活性。 感染患者之前可以使用具有高剂量和延长剂量的肺部。 住院治疗,以减少患者在拥挤的医院接受治疗,并贡献一个关键的可分配资源 保护护理人员和弱势群体所需的治疗和预防方式。 该提案围绕 4 个具体目标构建:(1) 开发瑞德西韦和巴拉替尼作为首批候选药物 利用肺巨噬细胞作为储存库来实现延长给药,以及针对 肺上皮病毒储存库将与瑞德西韦和巴拉替尼前药单体一起开发。 具有针对肺泡巨噬细胞的甘露糖和肽靶向配体的相应药物分子设计和 上皮区室,分别;(2)通过如何标准表征和优化药物候选者 他们将药物加载到肺巨噬细胞和上皮细胞中,并延长给药时间,这将带来更好的效果。 了解如何优化肺部靶向策略以促进未来抗病毒药物的开发。 将使用定量 LC-MS 药代动力学表征和安全性来研究机制 (3) 评估和优化药物活性 使用 hACE2 小鼠模型对抗 SARS-CoV-2 的病毒载量和生存研究将用于表征。 并开发优化的药物分子和药物分子组合,将来可以将其推广到 与目前的制剂方法相比,药物分子表现出更高的药物性能。 负荷、共同配制多种药物用于多疗法的能力以及可单独定制的药物 PK 最大限度地减少平台的模块化以及规模化和快速制造的配置文件。 响应属性,将允许将其他药物作为组合进行多样化合并。 这些属性促使该项目开发当前和未来治疗性冠状病毒产品的新品种。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick S. Stayton其他文献

Nanofluidic delivery implant sustains localization and maximizes efficacy of intratumoral immunotherapy
纳米流体输送植入物维持定位并最大限度地提高瘤内免疫治疗的功效
  • DOI:
    10.1016/j.nantod.2024.102258
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    17.4
  • 作者:
    Hsuan;N. Di Trani;Marzia Conte;Dinh Chuong Nguyen;Simbarashe Jokonya;Abe Wu;R. V. V;er Pol;er;Ashley L. Joubert;Ilaria Facchi;Anthony M. Wood;Jeremy Ho;F. Pesaresi;Valentina Cauda;Shu;Xuewu Liu;Patrick S. Stayton;C. Y. Chua;A. Grattoni
  • 通讯作者:
    A. Grattoni
Synthesis of zwitterionic, hydrophobic, and amphiphilic polymersviaRAFT polymerization induced self-assembly (PISA) in acetic acid
  • DOI:
    10.1039/c6py01172a
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Debobrato Das;Devin Gerboth;Almar Postma;Selvi Srinivasan;Hanna Kern;Jasmin Chen;Daniel M. Ratner;Patrick S. Stayton;Anthony J. Convertine
  • 通讯作者:
    Anthony J. Convertine
Correction to “Mannosylated STING Agonist Drugamers for Dendritic Cell-Mediated Cancer Immunotherapy”
对“用于树突状细胞介导的癌症免疫治疗的甘露糖化 STING 激动剂药物”的更正
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    18.2
  • 作者:
    Dinh Chuong Nguyen;Kefan Song;Simbarashe Jokonya;Omeed Yazdani;D. Sellers;Yonghui Wang;Abm Zakaria;S. Pun;Patrick S. Stayton
  • 通讯作者:
    Patrick S. Stayton
Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections
  • DOI:
    10.1039/c8bm00282g
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Fang-Yi Su;Jasmin Chen;Hye-Nam Son;Abby M. Kelly;Anthony J. Convertine;T. Eoin West;Shawn J. Skerrett;Daniel M. Ratner;Patrick S. Stayton
  • 通讯作者:
    Patrick S. Stayton
Mannosylated STING Agonist Drugamers for Dendritic Cell-Mediated Cancer Immunotherapy
用于树突状细胞介导的癌症免疫治疗的甘露糖化 STING 激动剂药物分子
  • DOI:
    10.1021/acscentsci.3c01310
  • 发表时间:
    2024-02-23
  • 期刊:
  • 影响因子:
    18.2
  • 作者:
    Dinh Chuong Nguyen;Kefan Song;Simbarashe Jokonya;Omeed Yazdani;D. Sellers;Yonghui Wang;Abm Zakaria;S. Pun;Patrick S. Stayton
  • 通讯作者:
    Patrick S. Stayton

Patrick S. Stayton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick S. Stayton', 18)}}的其他基金

Inhalation Therapy Platform for Coronavirus Infection Treatment
治疗冠状病毒感染的吸入治疗平台
  • 批准号:
    10687201
  • 财政年份:
    2021
  • 资助金额:
    $ 63.44万
  • 项目类别:
Long Acting Injectable Depots for TB Therapy
用于结核病治疗的长效注射剂
  • 批准号:
    10436302
  • 财政年份:
    2021
  • 资助金额:
    $ 63.44万
  • 项目类别:
Long Acting Injectable Depots for TB Therapy
用于结核病治疗的长效注射剂
  • 批准号:
    10632118
  • 财政年份:
    2021
  • 资助金额:
    $ 63.44万
  • 项目类别:
Inhalation Therapy Platform for Coronavirus Infection Treatment
治疗冠状病毒感染的吸入治疗平台
  • 批准号:
    10490888
  • 财政年份:
    2021
  • 资助金额:
    $ 63.44万
  • 项目类别:
Intracellular delivery of proapoptotic peptide drugs for the treatment of cancer
用于治疗癌症的促凋亡肽药物的细胞内递送
  • 批准号:
    8456142
  • 财政年份:
    2012
  • 资助金额:
    $ 63.44万
  • 项目类别:
Intracellular delivery of proapoptotic peptide drugs for the treatment of cancer
用于治疗癌症的促凋亡肽药物的细胞内递送
  • 批准号:
    8302741
  • 财政年份:
    2012
  • 资助金额:
    $ 63.44万
  • 项目类别:
Biofunctional Polymers for Intracellular Drug Delivery
用于细胞内药物输送的生物功能聚合物
  • 批准号:
    7102726
  • 财政年份:
    2003
  • 资助金额:
    $ 63.44万
  • 项目类别:
Biofunctional Polymers for Intracellular Drug Delivery
用于细胞内药物输送的生物功能聚合物
  • 批准号:
    7466737
  • 财政年份:
    2003
  • 资助金额:
    $ 63.44万
  • 项目类别:
Biofunctional Polymers for Intracellular Drug Delivery
用于细胞内药物输送的生物功能聚合物
  • 批准号:
    6802212
  • 财政年份:
    2003
  • 资助金额:
    $ 63.44万
  • 项目类别:
Biofunctional Polymers for Intracellular Drug Delivery
用于细胞内药物输送的生物功能聚合物
  • 批准号:
    6736575
  • 财政年份:
    2003
  • 资助金额:
    $ 63.44万
  • 项目类别:

相似国自然基金

基于“糖原合成-UDPG/P2Y14/STAT1-肺泡巨噬细胞M1型极化”途径探讨热炎宁合剂治疗急性肺损伤的作用机制
  • 批准号:
    82374418
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Galectin-1抑制肺泡巨噬细胞线粒体损伤介导的NLRP3活化减轻流感致急性肺损伤的机制研究
  • 批准号:
    82300005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HD5-myr靶向冠状病毒N蛋白CTD结构域调控肺泡原驻巨噬细胞功能重塑在肺损伤中的保护作用及机制研究
  • 批准号:
    82372184
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SIRT5-线粒体代谢轴失调介导SORT1Hi肺泡巨噬细胞METs形成在围术期急性肺损伤中的作用及机制研究
  • 批准号:
    82371292
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向HMGB1的WGA-siRNA纳米生物材料抑制肺泡巨噬细胞焦亡在烧伤脓毒症急性肺损伤的作用和分子机制
  • 批准号:
    82372517
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Pulmonary Vascular Regeneration via Venous Endothelial Progenitors
通过静脉内皮祖细胞进行肺血管再生
  • 批准号:
    10532604
  • 财政年份:
    2022
  • 资助金额:
    $ 63.44万
  • 项目类别:
Pulmonary Vascular Regeneration via Venous Endothelial Progenitors
通过静脉内皮祖细胞进行肺血管再生
  • 批准号:
    10753505
  • 财政年份:
    2022
  • 资助金额:
    $ 63.44万
  • 项目类别:
Inhalation Therapy Platform for Coronavirus Infection Treatment
治疗冠状病毒感染的吸入治疗平台
  • 批准号:
    10687201
  • 财政年份:
    2021
  • 资助金额:
    $ 63.44万
  • 项目类别:
Alveolus as Incubator: Functional Genomic Dissection of the Host Response to SARS-CoV-2 Infection.
肺泡作为孵化器:宿主对 SARS-CoV-2 感染反应的功能基因组解剖。
  • 批准号:
    10245986
  • 财政年份:
    2021
  • 资助金额:
    $ 63.44万
  • 项目类别:
Novel animal models to dissect how lung macrophages contribute to SARS-CoV2 alveolar pathology and respiratory failure
新型动物模型可剖析肺巨噬细胞如何导致 SARS-CoV2 肺泡病理和呼吸衰竭
  • 批准号:
    10351622
  • 财政年份:
    2021
  • 资助金额:
    $ 63.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了