Methods for microbiome compositional data
微生物组组成数据的方法
基本信息
- 批准号:10338342
- 负责人:
- 金额:$ 33.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAttentionBiological MarkersBiometryCharacteristicsChargeClinicCollaborationsCommunitiesComplexComputer softwareConsensusDataData AnalysesData AnalyticsData SetDevelopmentDiseaseExperimental DesignsGenomeGenomicsGoalsGrantHealthHumanHuman MicrobiomeLeadLinear ModelsManuscriptsMedicalMedicineMetagenomicsMethodologyMethodsModelingNaturePhylogenetic AnalysisPhylogenyProceduresPrognosisProteomeRegression AnalysisResearch DesignResearch PersonnelRoleSample SizeSamplingScienceScientific Advances and AccomplishmentsScientistSignal TransductionStatistical Data InterpretationStatistical MethodsStructureTestingTreesanalytical methodanalytical toolbasebiomarker discoverydesigndisease diagnosisflexibilityimprovedindividualized medicineinter-individual variationinterestmetabolomemethylomemicrobialmicrobiomemicrobiome analysismicrobiome compositionmicrobiome researchmultidimensional datamultiple omicsnovelopen sourceprogramssimulationstatisticstargeted treatmenttheoriestooltranscriptometwo-dimensionaluser friendly softwareuser-friendly
项目摘要
Project Summary
The broad and long-term objective of this project concerns the development of novel quantitative methods and
biostatistical tools for microbiome data analytics to aid in microbiome-based discovery sciences. The
microbiome, also called the second genome of the human, has received much attention in the past few years.
Due to its critical roles in human health and disease, the human microbiome has now been recognized as an
integral part of the individualized medicine approach because it not only accounts for inter-individual variability
in all aspects of a disease but also represents a potentially modifiable factor that is amenable to targeting by
therapeutics. Despite those fruitful and promising findings from microbiome studies, there is no consensus in
the current field as how to appropriately analyze the data, let alone the optimality and efficiency issues that
have yet to be addressed. Several challenges amount to this predicament, including complex experimental
designs of microbiome studies, an unknown interplay between microbiome and host, extremely sparsity and
high dimensionality of the data, phylogenetic relatedness of the microbial taxa, and compositional structure of
microbiome. As a result, although quite a few analytical methods and tools have been developed for
microbiome data analysis, several specific gaps exist in the methodological toolbox, hindering the advance of
microbiome-based biomedical sciences. To fill these gaps, this proposal aims to develop robust and powerful
quantitative methods and tools for microbiome data analysis. Specifically, Aim 1 focuses on developing robust
and powerful methods for differential abundance analysis in complex study designs. It will develop new
methods to address zero-inflation, compositional effects and correlations in microbiome data. Aim 2 focuses on
strategies to increase the power of microbiome-wide multiple testing. It proposes two new multiple testing
procedures, which address confounders and phylogenetic relatedness, respectively. Aim 3 proposes to
develop compositional canonical correlation analysis methods for integrating microbiome data with other omics
data. Specifically, it will develop an efficient and flexible framework for integrating heterogeneous omics data
with microbiome data, accounting for compositional effects and phylogenetic relatedness. Aim 4 will develop
user-friendly and efficient software packages so the community can benefit maximally from methodological and
scientific advances resulting from this application. The proposed methods will be evaluated using simulations,
and more importantly, applications to several ongoing microbiome studies in the Center of Individualized
Medicine at Mayo Clinic. The proposed quantitative methods and open-source software packages will
contribute to microbiome biomarker discovery and microbiome-based mechanistic studies. All methods and
tools developed under this grant will be made available free of charge to interested researchers and the public.
项目概要
该项目的广泛和长期目标涉及开发新颖的定量方法和
用于微生物组数据分析的生物统计工具,以帮助基于微生物组的发现科学。这
微生物组又称人类第二基因组,近年来受到广泛关注。
由于其在人类健康和疾病中的关键作用,人类微生物组现已被认为是
个体化医疗方法不可或缺的一部分,因为它不仅考虑了个体间的差异
疾病的各个方面,但也代表了一个潜在的可改变因素,可以通过
疗法。尽管微生物组研究取得了这些富有成效和有希望的发现,但目前尚未达成共识
当前领域如何正确地分析数据,更不用说优化和效率问题了
尚未得到解决。造成这种困境的几个挑战包括复杂的实验
微生物组研究的设计、微生物组和宿主之间未知的相互作用、极其稀疏和
数据的高维性、微生物类群的系统发育相关性以及微生物的组成结构
微生物组。因此,尽管已经开发了相当多的分析方法和工具
微生物组数据分析,方法学工具箱中存在一些具体的空白,阻碍了微生物组数据分析的进展
基于微生物组的生物医学科学。为了填补这些空白,该提案旨在开发强大而强大的
微生物组数据分析的定量方法和工具。具体来说,目标 1 侧重于开发稳健的
以及复杂研究设计中差异丰度分析的强大方法。将会开发出新的
解决微生物组数据中的零通货膨胀、成分效应和相关性的方法。目标 2 重点关注
提高微生物组多重测试能力的策略。它提出了两种新的多重测试
程序,分别解决混杂因素和系统发育相关性。目标 3 建议
开发将微生物组数据与其他组学整合的成分典型相关分析方法
数据。具体来说,它将开发一个高效、灵活的框架来集成异构组学数据
利用微生物组数据,解释组成效应和系统发育相关性。目标4将发展
用户友好且高效的软件包,使社区能够从方法和方法中最大程度地受益
该应用带来的科学进步。所提出的方法将通过模拟进行评估,
更重要的是,应用于个体化中心正在进行的几项微生物组研究
梅奥诊所的医学。所提出的定量方法和开源软件包将
有助于微生物组生物标志物的发现和基于微生物组的机制研究。所有方法和
根据这笔赠款开发的工具将免费提供给感兴趣的研究人员和公众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Chen其他文献
Hyaluronic acid-coated bovine serum albumin nanoparticles loaded with brucine as selective nanovectors for intra-articular injection.
透明质酸包被的牛血清白蛋白纳米颗粒负载马钱子碱作为关节内注射的选择性纳米载体。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:8
- 作者:
Zhipeng Chen#;Juan Chen#;Weidong Li;Jun Chen;Haibo C heng;Jinhuo Pan*;Baochang Cai* - 通讯作者:
Baochang Cai*
Corrosion wear characteristics of TC4, 316 stainless steel, and Monel K500 in artificial seawater
TC4、316不锈钢、蒙乃尔K500在人工海水中的腐蚀磨损特性
- DOI:
10.1039/c7ra03065g - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jun Chen - 通讯作者:
Jun Chen
Jun Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Chen', 18)}}的其他基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10696455 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10696455 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Activation of the RXR/PPARγ axis improves long-term outcomes after ischemic stroke in aged mice
RXR/PPARγ 轴的激活可改善老年小鼠缺血性中风后的长期结果
- 批准号:
10364171 - 财政年份:2022
- 资助金额:
$ 33.66万 - 项目类别:
Adiponectin on cerebrovascular regulation in vascular cognitive impairment and dementia (VCID)
脂联素对血管性认知障碍和痴呆 (VCID) 的脑血管调节作用
- 批准号:
10542359 - 财政年份:2022
- 资助金额:
$ 33.66万 - 项目类别:
Activation of the RXR/PPARγ axis improves long-term outcomes after ischemic stroke in aged mice
RXR/PPARγ 轴的激活可改善老年小鼠缺血性中风后的长期结果
- 批准号:
10609791 - 财政年份:2022
- 资助金额:
$ 33.66万 - 项目类别:
Methods for Analysis of Genomic Data with Auxiliary Information
具有辅助信息的基因组数据分析方法
- 批准号:
10415152 - 财政年份:2021
- 资助金额:
$ 33.66万 - 项目类别:
Methods for Analysis of Genomic Data with Auxiliary Information
具有辅助信息的基因组数据分析方法
- 批准号:
10188885 - 财政年份:2021
- 资助金额:
$ 33.66万 - 项目类别:
Inflammation resolution, neuroprotection, and brain repair to promote stroke recovery
炎症消解、神经保护和大脑修复以促进中风康复
- 批准号:
9697886 - 财政年份:2017
- 资助金额:
$ 33.66万 - 项目类别:
Inflammation resolution, neuroprotection, and brain repair to promote stroke recovery
炎症消解、神经保护和大脑修复以促进中风康复
- 批准号:
10261320 - 财政年份:2017
- 资助金额:
$ 33.66万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Gabapentinoid/opioid mixtures: abuse and toxicity
加巴喷丁/阿片类混合物:滥用和毒性
- 批准号:
10639396 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Development matters: Characterizing patterns of emergent ADHD risk through a neurodevelopmental framework
发展很重要:通过神经发育框架表征 ADHD 突发风险的模式
- 批准号:
10678400 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Improving outcomes for substance-affected families in the child welfare system
改善儿童福利系统中受药物影响的家庭的成果
- 批准号:
10734742 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Achieving Health Equity During the COVID-19 Pandemic: Lessons Learned from Nurses and High Performing Hospitals
在 COVID-19 大流行期间实现健康公平:从护士和高绩效医院汲取的经验教训
- 批准号:
10655888 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
- 批准号:
10584245 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别: