RNA Polymerase I Associated Factors: Novel Targets in Cancer Therapy
RNA 聚合酶 I 相关因素:癌症治疗的新靶点
基本信息
- 批准号:10327609
- 负责人:
- 金额:$ 3.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:American Association of Cancer ResearchAuxinsBinding ProteinsBiochemicalBiochemical GeneticsBiogenesisBiologicalBiological AssayBiological ModelsC-terminalCRISPR/Cas technologyCell Cycle ArrestCell DeathCell ProliferationCell divisionCell physiologyCellsChemicalsChemotherapy-Oncologic ProcedureCommunicationComplexDNADNA BindingDNA Binding DomainDNA Polymerase IIIDNA-Directed RNA PolymeraseDataDevelopmentDimerizationDiseaseEducational process of instructingEducational workshopEssential GenesExposure toFellowshipFutureGenesGenetic TranscriptionGenetic studyHeart HypertrophyHeterodimerizationHomeostasisIn VitroInvestigationKnowledgeLaboratoriesMalignant NeoplasmsMammalian CellManuscriptsMapsMass Spectrum AnalysisModalityMorphologyNormal CellNucleolar ProteinsPathologyPathway interactionsPharmaceutical PreparationsPhysiologicalPlayPolymeraseProcessProtein BiosynthesisPublicationsPublishingRNA Polymerase IRegulationResearchRibosomal DNARibosomal RNARibosomesRoleScientistStressStructureSupporting CellSystemTailTechniquesTestingTrainingTranscription InitiationWorkWritingYeastsbasecancer cellcancer therapycell growthchromatin immunoprecipitationcrosslinkexperienceexperimental studyimprovedknock-downlive cell imagingmeltingnew therapeutic targetnovelprotein protein interactionrRNA GenesrRNA Precursorrecruitskillssymposiumtherapeutic targettranscription factor
项目摘要
PROJECT SUMMARY/ABSTRACT
The regulation of ribosome biogenesis (RB) plays a central role in maintaining cellular homeostasis and
supporting cell growth. The rate-limiting step in this process is transcription of the ribosomal RNA genes by RNA
polymerase I (Pol I). Dysregulation of RB can contribute to pathologies such as cancer, cardiac hypertrophy, and
ribosomopathies. Further, many chemotherapeutic drugs inhibit either rDNA transcription or rRNA processing,
but have many off-target effects that limit their usefulness. Many pathways play a role in the regulation of rDNA
transcription. Two mammalian factors that are involved in this regulation are Polymerase Associated Factor 53
(PAF53) and PAF49. The purpose of this study is to determine the role(s) of PAF49 and 53 in rDNA transcription
and characterize the downstream physiological effects of directly inhibiting this process in both normal and
cancer cells. This will be an important comparison since normal cells arrest when rDNA is inhibited while cancer
cells die.
To rapidly degrade PAF49/53, a novel system that utilizes CRISPR/Cas 9 and an auxin inducible degron will be
used. This will allow us to carry out in vitro biochemical and “genetic” studies of PAF49/53 in mammalian cells.
Our published data demonstrates that PAF53 is required for rDNA transcription and cell proliferation. In addition,
the three domains of PAF53 are each necessary but not sufficient to support wild-type levels of cell growth. Our
lab has also defined a second DNA-binding domain in PAF53 that had not been discovered. This study will
expand upon the domain analysis of PAF53 and further characterize its DNA-binding activity. The work proposed
is significant as it will aid in further understanding the process of rDNA transcription by Pol I and the physiological
consequences of inhibiting this process, i.e. nucleolar stress and cell death. It will also contribute to the discovery
of novel drug targets that could be utilized in effective cancer treatments.
To complete the proposed research, I will be exposed to new techniques such as crosslinking mass
spectrometry, live-cell imaging, and chromatin immunoprecipitation. To improve my scientific communication
skills, I will attend and present at the OddPols, AACR and other national and local conferences, as well as attend
workshops on scientific writing. I will also prepare multiple manuscripts for publication. Further, I will take multiple
opportunities to gain teaching experience. I also will attend seminars and professional development workshops
to help extend my scientific purview beyond my field. These opportunities will allow me to network and engage
with fellow scientists in order to build connections for future collaborative projects. Overall, the training I will
receive during this fellowship will help prepare me to be a competitive postdoctoral candidate and a successful
independent research scientist.
项目概要/摘要
核糖体生物发生 (RB) 的调节在维持细胞稳态和
支持细胞生长的限速步骤是RNA对核糖体RNA基因的转录。
聚合酶 I (Pol I) 的失调可导致癌症、心脏肥大等疾病。
此外,许多化疗药物抑制 rDNA 转录或 rRNA 加工,
但有许多脱靶效应限制了它们的用途。许多途径在 rDNA 的调节中发挥作用。
参与这种调节的两个哺乳动物因子是聚合酶相关因子 53。
(PAF53) 和 PAF49 本研究的目的是确定 PAF49 和 53 在 rDNA 转录中的作用。
并描述了正常和正常情况下直接抑制这一过程的下游生理效应。
这将是一个重要的比较,因为当 rDNA 被抑制时,正常细胞就会停滞,而癌症则被抑制。
细胞死亡。
为了快速降解 PAF49/53,将开发一种利用 CRISPR/Cas 9 和生长素诱导降解子的新系统
这将使我们能够在哺乳动物细胞中进行 PAF49/53 的体外生化和“遗传”研究。
我们发表的数据表明,PAF53 是 rDNA 转录和细胞增殖所必需的。
PAF53 的三个结构域对于支持野生型细胞生长水平都是必需的,但不足以支持。
实验室还在 PAF53 中定义了本研究尚未发现的第二个 DNA 结合域。
扩展 PAF53 的结构域分析并进一步表征其 DNA 结合活性。
意义重大,因为它将有助于进一步了解 Pol I 的 rDNA 转录过程和生理学
抑制这一过程的后果,即核仁应激和细胞死亡,也将有助于这一发现。
可用于有效癌症治疗的新药物靶点。
为了完成拟议的研究,我将接触新技术,例如交联质量
光谱分析、活细胞成像和染色质免疫沉淀以改善我的科学交流。
技能,我将参加 OddPols、AACR 和其他国家和地方会议并在会上发言,以及参加
我还将准备多篇关于科学写作的研讨会,此外,我还将拍摄多篇手稿。
我还将参加研讨会和专业发展研讨会以获得教学经验的机会。
帮助将我的科学视野扩展到我的领域之外。这些机会将使我能够建立人际网络并参与其中。
总体而言,我将与其他科学家一起进行培训,以便为未来的合作项目建立联系。
在此奖学金期间获得的奖学金将有助于我成为一名有竞争力的博士后候选人和成功的博士后候选人
独立研究科学家。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Mammalian and Yeast A49 and A34 Heterodimers: Homologous but Not the Same.
哺乳动物和酵母 A49 和 A34 异二聚体:同源但不相同。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:3.5
- 作者:McNamar, Rachel;Rothblum, Katrina;Rothblum, Lawrence I
- 通讯作者:Rothblum, Lawrence I
The Codependent Expression of the Essential Mammalian RNA Polymerase I PAF49/PAF53 Heterodimer.
必需哺乳动物 RNA 聚合酶 I PAF49/PAF53 异二聚体的共依赖性表达。
- DOI:
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:McNamar, Rachel;Knutson, Bruce;Rothblum, Lawrence
- 通讯作者:Rothblum, Lawrence
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel McNamar其他文献
Rachel McNamar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
生长素-TMK信号途径通过GSK3调控细胞不对称分裂的分子机制
- 批准号:32300271
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PUB8泛素E3连接酶拮抗生长素调控脱落酸信号及子叶变绿的遗传机理
- 批准号:32360082
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
香豆素依赖生长素信号和极性运输抑制根生长的分子机制
- 批准号:32360076
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
毛华菊CvARF5和CvARF3响应生长素调控舌状花形态的分子机制
- 批准号:32371948
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
生长素运输载体OsPIN4-2在水稻粒型调控中的网络解析
- 批准号:32301911
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing the Role of Integrator in Neuronal Function
探讨积分器在神经元功能中的作用
- 批准号:
10777205 - 财政年份:2023
- 资助金额:
$ 3.43万 - 项目类别:
Gut stress-induced intercellular signaling networks promoting longevity and proteostasis
肠道应激诱导的细胞间信号网络促进长寿和蛋白质稳态
- 批准号:
10717808 - 财政年份:2023
- 资助金额:
$ 3.43万 - 项目类别:
Determining the role of nuclear envelope reformation proteins in regulating the cGAS/STING innate immune response in cancer
确定核膜重组蛋白在调节癌症 cGAS/STING 先天免疫反应中的作用
- 批准号:
10750669 - 财政年份:2023
- 资助金额:
$ 3.43万 - 项目类别:
The Role of mRNA Degradation in Embryonic Cell Fate Specification
mRNA 降解在胚胎细胞命运规范中的作用
- 批准号:
10604512 - 财政年份:2023
- 资助金额:
$ 3.43万 - 项目类别:
Tools for reversible short-term degradation of TCF-1 to address its molecular functions
用于 TCF-1 可逆短期降解以解决其分子功能的工具
- 批准号:
10647571 - 财政年份:2023
- 资助金额:
$ 3.43万 - 项目类别: