Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
基本信息
- 批准号:10307109
- 负责人:
- 金额:$ 32.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2022-04-01
- 项目状态:已结题
- 来源:
- 关键词:ASD patientAdaptive BehaviorsAirAnimal ModelAnimalsAreaBehaviorBehavioralBiologicalBrainBrain regionCognitiveDiseaseEcholocationElectrophysiology (science)EmotionsEnvironmentEpilepsyEsthesiaEtiologyFingersGenerationsGenesGenetic RiskGoalsHeadHeterozygoteImpairmentIndividualInterventionLinkLocationMeasurementMeasuresMendelian disorderModelingMotorMotor CortexMotor outputMovementMusMutant Strains MiceNervous system structureNeuronsOrganPopulationProcessResearchResearch Project GrantsRisk FactorsRunningSYNGAP1SaccadesScanningSensorySiliconSomatosensory CortexSourceStructureStructure of trigeminal ganglionStudy modelsSystemTactileTelephoneTestingThalamic structureThinkingTimeTouch sensationVibrissaeVisual Fieldsautism spectrum disorderawakebehavioral impairmentbehavioral phenotypingbrain abnormalitiesexperiencefunctional disabilitygenetic variantin vivoindividuals with autism spectrum disorderinsightmouse modelneural circuitneural networknovelphysical modelrelating to nervous systemresponserisk variantsensory inputsensory processing disordersensory systemsocial
项目摘要
PROJECT SUMMARY
The overarching goal of this project is to better understand the links between ASD genetic risk, resulting
distributed brain connectivity impairments, and the impact of this on ASD-relevant behaviors. We will do this by
performing state-of-the art in vivo electrophysiology studies in awake-behaving animals that model a monogenic
form of ASD. This research project is significant because altered brain connectivity is routinely observed
in ASD patients, though it remains unknown how brain connectivity alterations cause abnormal
behaviors relevant to ASD. In the animal model, we will focus on behaviors that optimize active touch. This is
approach is valid because altered sensory function, including touch, is a core manifestation of ASD and
somatomotor brain areas display altered activation in ASD patients. An emerging idea is that altered functioning
of sensory systems directly impairs the functions of other major neural domains, such as cognitive and social
systems. Active touch arises through rapid adaptions in the dynamics of touch organs in response to physical
contact with objects. This behavioral transformation optimizes touch-related input into the brain and is an
emergent behavior resulting from sensorimotor integration at various levels in the nervous system. Therefore,
we generally hypothesize that genetic variants that cause ASD disrupt key points of functional connectivity within
the somatomotor system, which in turn causes altered active touch behaviors, leading to altered acquisition of
tactile information. This hypothesis is significant because it could define a neural process (i.e. altered distributed
functional connectivity) that explains how sensory-guided adaptive behaviors are impaired by genetic variants
that cause ASD. Our modeling studies also have the potential to define how altered brain connectivity can disrupt
relevant behaviors. We will test this hypothesis in the first aim by recording the flow of information throughout
the major areas of the somato-motor system in a mouse model for a monogenic form of ASD. The proposed in
vivo recordings in awake-behaving animals will utilize state-of-art silicon neural probes that will enable us to
measure local and long-range functional connectivity of neurons during distinct behaviors, including during active
touches of objects. These sophisticated measurements will identify circuits that are functionally impaired during
ASD-relevant behaviors. The second aim takes a distinct, but complementary approach by regionally and
temporally disrupting expression of the causal ASD gene and then observing the impact of these perturbations
on behaviors that define etiologically-relevant active touch. We expect to find that proper expression of the ASD
gene is required in developing somatomotor cortical areas to promote normal active touch behaviors. The
combined impact of these complementary approaches is that they are expected to define the circuits that cause
abnormal active touch-related behaviors in the mouse model. Thus, the proposed research is expected to
advance our understanding of how major ASD risk genes disrupt the connectivity of neural circuits that underlie
relevant behaviors.
项目概要
该项目的总体目标是更好地了解 ASD 遗传风险之间的联系,从而
分布式大脑连接障碍,以及它对 ASD 相关行为的影响,我们将通过以下方式做到这一点。
在清醒行为的动物中进行最先进的体内电生理学研究,模拟单基因
自闭症谱系障碍(ASD)的一种形式。这个研究项目意义重大,因为人们经常观察到大脑连接性的改变。
在自闭症谱系障碍(ASD)患者中,尽管目前尚不清楚大脑连接改变如何导致异常
在动物模型中,我们将重点关注优化主动触摸的行为。
这种方法是有效的,因为感觉功能(包括触觉)的改变是自闭症谱系障碍(ASD)的核心表现,
自闭症谱系障碍患者的躯体运动大脑区域的激活发生了改变。一个新的想法是功能发生了改变。
感觉系统的功能障碍直接损害其他主要神经领域的功能,例如认知和社交
主动触摸是通过触摸器官对物理反应的动态快速适应而产生的。
这种行为转变优化了大脑中与触摸相关的输入,是一种
因此,神经系统各个层面的感觉运动整合产生的紧急行为。
我们通常假设导致 ASD 的基因变异破坏了体内功能连接的关键点
躯体运动系统,这反过来会导致主动触摸行为的改变,从而导致对
触觉信息。这个假设很重要,因为它可以定义一个神经过程(即改变分布
功能连接)解释了遗传变异如何损害感觉引导的适应性行为
我们的模型研究也有可能定义改变大脑连接如何破坏。
我们将通过记录整个过程中的信息流来检验这个假设。
单基因形式 ASD 小鼠模型中躯体运动系统的主要区域。
清醒行为动物的体内记录将利用最先进的硅神经探针,这将使我们能够
测量不同行为期间神经元的局部和远程功能连接,包括活动期间
物体的触摸。这些复杂的测量将识别在此过程中功能受损的电路。
第二个目标在区域和地区采取独特但互补的方法。
暂时扰乱 ASD 基因的表达,然后观察这些扰动的影响
我们期望找到 ASD 的正确表达。
发育躯体运动皮层区域需要基因来促进正常的主动触摸行为。
这些互补方法的综合影响是,它们有望定义导致
因此,本研究预计会在小鼠模型中发现与主动触摸相关的异常行为。
我们对自闭症谱系障碍(ASD)主要风险基因如何破坏神经回路连接性的理解取得了进展
相关行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAVIN R RUMBAUGH其他文献
GAVIN R RUMBAUGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAVIN R RUMBAUGH', 18)}}的其他基金
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10697387 - 财政年份:2022
- 资助金额:
$ 32.77万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10704718 - 财政年份:2022
- 资助金额:
$ 32.77万 - 项目类别:
Neurodevelopmental Disorder Risk Gene Regulation of Intrinsic Membrane Excitability: A Rheostat that Tunes Dendritic Morphogenesis to Regulate Circuit Assembly During Development
内在膜兴奋性的神经发育障碍风险基因调节:调节树突形态发生以调节发育过程中电路组装的变阻器
- 批准号:
10571558 - 财政年份:2022
- 资助金额:
$ 32.77万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10456979 - 财政年份:2022
- 资助金额:
$ 32.77万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10264087 - 财政年份:2020
- 资助金额:
$ 32.77万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
9885217 - 财政年份:2019
- 资助金额:
$ 32.77万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
10526411 - 财政年份:2019
- 资助金额:
$ 32.77万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
10616304 - 财政年份:2019
- 资助金额:
$ 32.77万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
10063962 - 财政年份:2019
- 资助金额:
$ 32.77万 - 项目类别:
A Scalable Neuron-Based High-Throughput Screening Platform for the Discovery of Compounds that Restore Protein Expression Caused by Genetic Haploinsufficiency
一种可扩展的基于神经元的高通量筛选平台,用于发现可恢复由遗传单倍体不足引起的蛋白质表达的化合物
- 批准号:
9370360 - 财政年份:2017
- 资助金额:
$ 32.77万 - 项目类别:
相似国自然基金
复杂来流条件下胸鳍推进模式水动力及其适应性行为特性数值研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温轧制界面无机磷酸盐聚合物润滑剂设计制备及宽温域摩擦学适应性行为
- 批准号:52072380
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
种粮农户应对气候变化的适应性行为研究——基于黄淮海地区数据
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
农业水价综合改革背景下节水效应与粮食生产影响研究——基于不同经营规模农业生产主体适应性行为差异
- 批准号:71973065
- 批准年份:2019
- 资助金额:48 万元
- 项目类别:面上项目
风险感知、情境差距与农户极端气温灾害适应性行为——基于鄱阳湖区种粮大户的调查
- 批准号:71963020
- 批准年份:2019
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 32.77万 - 项目类别:
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 32.77万 - 项目类别:
Homeostatic plasticity mechanisms regulate behavior in vivo
稳态可塑性机制调节体内行为
- 批准号:
10205296 - 财政年份:2021
- 资助金额:
$ 32.77万 - 项目类别:
Homeostatic plasticity mechanisms regulate behavior in vivo
稳态可塑性机制调节体内行为
- 批准号:
10385768 - 财政年份:2021
- 资助金额:
$ 32.77万 - 项目类别:
Homeostatic plasticity mechanisms regulate behavior in vivo
稳态可塑性机制调节体内行为
- 批准号:
10674083 - 财政年份:2021
- 资助金额:
$ 32.77万 - 项目类别: