A Scalable Neuron-Based High-Throughput Screening Platform for the Discovery of Compounds that Restore Protein Expression Caused by Genetic Haploinsufficiency
一种可扩展的基于神经元的高通量筛选平台,用于发现可恢复由遗传单倍体不足引起的蛋白质表达的化合物
基本信息
- 批准号:9370360
- 负责人:
- 金额:$ 68.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAllelesAutistic DisorderBiologicalBiological AssayBrainBrain DiseasesBudgetsChemicalsChildhoodClinicalDevelopmentDiseaseEnvironmentEpilepsyEvaluationFluorescenceGene TargetingGeneticGoalsHandHumanIndustrializationIntellectual functioning disabilityKnock-in MouseLeadLibrariesMagicMindMiniaturizationModelingMolecularMusNatureNeuronsOnline Mendelian Inheritance In ManPatientsPharmaceutical PreparationsPhenotypePlant RootsProceduresProcessProteinsReporterReportingReproducibilityResearchRoboticsSeriesSystemSystems DevelopmentTestingTherapeuticVariantWorkassay developmentbasecost effectivedesigndisease phenotypedrug discoveryexperimental studyflexibilityhigh throughput screeningimprovedminiaturizeneuropsychiatric disordernovelprotein expressionscale upscreening
项目摘要
PROJECT SUMMARY
Drug discovery pipelines for neuropsychiatric disorders are dry. One approach to rejuvenating these pipelines
would be to create assays based on relevant disease phenotypes in primary neurons, something that is
currently lacking. However, a scalable assay development platform that is based on bona fide neurons,
remains cost effective, and that can support industrial level HTS does not currently exist. Over the past five
years, our collaborative group has created a flexible and scalable primary neuron assay development system
that is compatible with industrial-level HTS. Here, our goal is to optimize these procedures and workflows
to determine the limit of scalability of neuron-based HTS phenotypic assays so that they can easily
support very large campaigns of >200K compounds.
A substantial proportion of childhood brain disorders are caused by single autosomal dominant variants
resulting in genetic haploinsufficiency. The rare genetic brain disorders that arise from these variants offer the
greatest potential for discovery of robust therapeutics because the disease mechanism is often straight forward
(i.e. low protein expression). Therefore, a rationale strategy to improve conditions in these patients would be to
treat them with “magic bullet” compounds that raise expression of functional proteins from the remaining
undamaged allele (e.g. “boosting compounds”). De novo nonsense variants that cause SYNGAP1
haploinsufficiency lead to a genetically-defined form of intellectual disability with autism and epilepsy (MRD5;;
OMIM#603384) that may explain up to 1-2% of all ID cases. The accepted cause of this disorder is low
functional protein expression in neurons caused most often by truncating SYNGAP1 nonsense variants. As a
means to refine the neuron-based HTS system, and to advance treatment for ASD-related disorders, we
are seeking to scale-up and implement an assay for SynGAP expression that is compatible with
industrial-level robotics. In the first Aim, we will optimize an HTS-compatible and disease-relevant SynGAP
expression assay. This assay is based on mouse primary neurons where tdTomato fluorescence reflects
steady-state endogenous SynGAP protein levels. In the second aim, we will miniaturize the SynGAP
expression assay to the 1536-well format. This miniaturization process would enable an HTS-scale screen of
this, or any other related neuron-based phenotypic assay, of up to 400,000 culture wells using a standard
screening budget. Finally, we will implement the SynGAP expression assay in a true uHTS environment and
then validate lead compounds that emerge from a 20K compound pilot screen, including a 10K compound
repurposing screen of known “safe in human” compounds. The impact of this project that we expect to
develop procedures that will increase the scale of HTS campaigns in neurons by 10-fold or more relative to the
current state-of-the-art in academic screening centers. We also expect to validate at least one lead compound
that boosts SynGAP expression, hopefully from the repurposing library.
项目概要
神经精神疾病的药物发现渠道枯竭,振兴这些渠道的一种方法。
将是根据原代神经元的相关疾病表型创建检测方法,
然而,目前缺乏基于真正神经元的可扩展检测开发平台。
仍然具有成本效益,并且在过去五年中目前不存在能够支持工业级高温超导的技术。
多年来,我们的合作小组创建了一个灵活且可扩展的初级神经元检测开发系统。
这与工业级 HTS 兼容。在这里,我们的目标是优化这些程序和工作流程。
确定基于神经元的 HTS 表型测定的可扩展性极限,以便他们可以轻松地
支持超过 200K 化合物的大型活动。
很大一部分儿童脑部疾病是由单一常染色体显性变异引起的
导致遗传单倍体不足的原因是这些变异引起的罕见遗传性脑部疾病。
发现强有力的治疗方法的最大潜力,因为疾病机制通常是简单的
(即低蛋白表达)因此,改善这些患者状况的基本策略是:
用“神奇的子弹”化合物治疗它们,这些化合物可以提高剩余的功能蛋白的表达
未受损的等位基因(例如“增强化合物”)。
单倍体不足会导致遗传性智力障碍,包括自闭症和癫痫症(MRD5;;
OMIM#603384)这可以解释高达 1-2% 的 ID 病例,目前公认的导致这种疾病的原因较低。
神经元中的功能性蛋白质表达通常是由截断 SYNGAP1 无义变体引起的。
旨在完善基于神经元的 HTS 系统,并推进 ASD 相关疾病的治疗,我们
正在寻求扩大并实施与 SynGAP 检测表达兼容的方法
在第一个目标中,我们将优化 HTS 兼容且与疾病相关的 SynGAP。
表达测定 该测定基于小鼠原代神经元,其中 tdTomato 荧光反映
稳态内源 SynGAP 蛋白水平 在第二个目标中,我们将小型化 SynGAP。
1536 孔格式的表达测定。这种小型化过程将实现 HTS 规模的筛选
使用标准进行多达 400,000 个培养孔的这种或任何其他相关的基于神经元的表型测定。
最后,我们将在真正的 uHTS 环境中实施 SynGAP 表达测定。
然后验证从 20K 化合物试点筛选中出现的先导化合物,包括 10K 化合物
重新筛选已知的“对人体安全”的化合物 我们预计该项目的影响。
开发程序,将神经元中 HTS 活动的规模增加 10 倍或更多
我们还期望验证至少一种先导化合物。
增强 SynGAP 表达,希望来自重新利用的文库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAVIN R RUMBAUGH其他文献
GAVIN R RUMBAUGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAVIN R RUMBAUGH', 18)}}的其他基金
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10697387 - 财政年份:2022
- 资助金额:
$ 68.73万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10704718 - 财政年份:2022
- 资助金额:
$ 68.73万 - 项目类别:
Neurodevelopmental Disorder Risk Gene Regulation of Intrinsic Membrane Excitability: A Rheostat that Tunes Dendritic Morphogenesis to Regulate Circuit Assembly During Development
内在膜兴奋性的神经发育障碍风险基因调节:调节树突形态发生以调节发育过程中电路组装的变阻器
- 批准号:
10571558 - 财政年份:2022
- 资助金额:
$ 68.73万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10456979 - 财政年份:2022
- 资助金额:
$ 68.73万 - 项目类别:
Molecular and cellular basis for autism spectrum disorders caused by exacerbated translation
加剧翻译引起的自闭症谱系障碍的分子和细胞基础
- 批准号:
10264087 - 财政年份:2020
- 资助金额:
$ 68.73万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
9885217 - 财政年份:2019
- 资助金额:
$ 68.73万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
10307109 - 财政年份:2019
- 资助金额:
$ 68.73万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
10526411 - 财政年份:2019
- 资助金额:
$ 68.73万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
10616304 - 财政年份:2019
- 资助金额:
$ 68.73万 - 项目类别:
Causal Interactions between genetic risk, precise cortical connectivity, and autism-associated behaviors
遗传风险、精确皮质连接和自闭症相关行为之间的因果相互作用
- 批准号:
10063962 - 财政年份:2019
- 资助金额:
$ 68.73万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Tsc1 Regulation of Purkinje Neuron Firing and Cerebellar Function
Tsc1 对浦肯野神经元放电和小脑功能的调节
- 批准号:
10360002 - 财政年份:2022
- 资助金额:
$ 68.73万 - 项目类别:
Cellular and Temporal Dissection of KCNQ3 Gain-of-Function Disorder
KCNQ3 功能获得障碍的细胞和颞叶解剖
- 批准号:
10591921 - 财政年份:2022
- 资助金额:
$ 68.73万 - 项目类别: