Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
基本信息
- 批准号:10295749
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgingAlgorithmsArchitectureArteriesArtificial IntelligenceBlood PressureBlood flowBrainCardiometabolic DiseaseCardiovascular DiseasesCerebrovascular DisordersCessation of lifeCharacteristicsCholesterolClassificationClinicalCodeCohort StudiesCoronary heart diseaseDNADataData StoreDevelopmentDiabetes MellitusDiagnosisDisease OutcomeElectronic Health RecordEnvironmental Risk FactorFunctional disorderGeneticGenetic RiskGenomicsGenotypeHeartHeart DiseasesHereditary DiseaseHeritabilityHeterogeneityIndividualIschemic StrokeKnowledgeLeadLegLipidsLiteratureModelingMorbidity - disease rateMyocardial InfarctionNon-Insulin-Dependent Diabetes MellitusOnset of illnessOutcomePatternPeripheral arterial diseasePersonsPharmaceutical PreparationsPhenotypePopulationPrincipal Component AnalysisProceduresPublishingQuality of lifeRiskRisk FactorsSmokingStatistical ModelsStrokeStructureSubgroupSusceptibility GeneTestingVariantVascular DiseasesVeteransWorkbasebiobankcardiometabolismcardiovascular disorder preventioncardiovascular disorder riskcardiovascular risk factorclinical data warehouseclinical heterogeneityclinical riskdata warehousedesigndiabeticdisease phenotypegenetic informationgenetic variantgenome wide association studyglycemic controlhealth care service utilizationheart disease riskhigh dimensionalityhigh riskhigh risk populationimprovedinnovationlifestyle factorslimb lossmortalitymultidimensional datanovelnovel therapeuticspersonalized risk predictionphenomephenomicsphenotypic datapolygenic risk scoreprecision medicineprematurepreventprogramsrisk predictionstemstructural genomicstrait
项目摘要
Type 2 diabetes (T2D) and cardiovascular disease (CVD) are among the leading causes of morbidity and
mortality in US Veterans, as well as the US population at large. T2D is a widely-recognized risk factor for CVD,
and T2D leads to worse CVD outcomes. However, there remains considerable clinical heterogeneity among
individuals with T2D. Even among individuals with apparently similar glycemic control, there is significant
variability with respect to who will develop CVD. To develop more effective strategies to prevent CVD in this
high-risk population, better approaches for quantifying CVD risk are needed. Using novel computational
approaches, we will consider dense phenotype and genotype data to identify the subpopulations of individuals
with T2D who are at the highest risk of heart and vascular disease. In Aim 1, the relationship between traditional
CVD risk factors, such as cholesterol, blood pressure, and smoking, and three heart and vascular disease
phenotypes: peripheral artery disease (PAD), coronary heart disease (CHD), and cerebrovascular disease, will
be tested. To account for the fact that these outcomes frequently occur in the same individuals, statistical models
that treat the traits as correlated-within person outcomes will be used. To determine if the addition of genetic
information improves the prediction of CVD outcomes, the impact of genetic risk scores, based on preliminary
studies from the VA Million Veteran Program and other published work, on the models will be assed. In Aim 2
dense phenotype data will be extracted from the electronic health record and novel artificial intelligence based
biclustering algorithms will be used to identify hidden subtypes of T2D. The association of these subtypes with
CVD outcomes will then be assessed. In Aim 3, a similar approach will be taken to elaborate T2D subtypes
based on DNA variants known to associate with T2D, CVD, and their risk factors. Finally, the genetic and
phenotypic data will be jointly considered. These approaches will be applied across data from both US Veterans,
using the Veterans Aging Cohort Study and the VA population at large (via the Corporate Data Warehouse), and
non-Veterans, using data from the PennMedicine BioBank, Penn Data Store, and UK Biobank. Successful
completion of this project will help to elucidate the phenotype structure of T2D and identify individuals at the
highest risk of T2D. These results will lay the ground work for developing tailored strategizes for CVD prevention
in T2D and help realize the promise of precision medicine for heart and vascular disease.
2 型糖尿病 (T2D) 和心血管疾病 (CVD) 是发病率和死亡率的主要原因之一
美国退伍军人以及整个美国人口的死亡率。 T2D 是公认的 CVD 危险因素,
T2D 会导致更糟糕的 CVD 结果。然而,不同疾病之间仍存在相当大的临床异质性。
患有 T2D 的个体。即使在血糖控制明显相似的个体中,也存在显着的差异
哪些人会患上 CVD,存在差异。制定更有效的策略来预防CVD
对于高危人群,需要更好的方法来量化 CVD 风险。使用新颖的计算
方法,我们将考虑密集的表型和基因型数据来识别个体的亚群
T2D 患者患心脏病和血管疾病的风险最高。在目标 1 中,传统与传统之间的关系
CVD危险因素,如胆固醇、血压和吸烟,以及三种心脏和血管疾病
表型:外周动脉疾病(PAD)、冠心病(CHD)和脑血管疾病
被测试。为了解释这些结果经常发生在同一个人身上的事实,统计模型
将使用将这些特征视为与人内相关的结果。确定是否添加基因
信息可改善 CVD 结果的预测、遗传风险评分的影响(基于初步结果)
退伍军人管理局百万退伍军人计划和其他已发表的关于模型的研究将得到评估。目标 2
将从电子健康记录和基于新型人工智能的数据中提取密集的表型数据
双聚类算法将用于识别 T2D 的隐藏亚型。这些亚型与的关联
然后将评估 CVD 结果。在目标 3 中,将采用类似的方法来阐述 T2D 亚型
基于已知与 T2D、CVD 及其危险因素相关的 DNA 变异。最后,遗传和
表型数据将被共同考虑。这些方法将应用于美国退伍军人的数据,
使用退伍军人老龄化队列研究和广大退伍军人管理局人口(通过公司数据仓库),以及
非退伍军人,使用来自 PennMedicine BioBank、Penn Data Store 和 UK Biobank 的数据。成功的
该项目的完成将有助于阐明 T2D 的表型结构并识别个体
T2D 风险最高。这些结果将为制定定制的 CVD 预防策略奠定基础
T2D 领域的研究,并帮助实现针对心脏和血管疾病的精准医疗的承诺。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Michael Damrauer其他文献
Scott Michael Damrauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Michael Damrauer', 18)}}的其他基金
Leveraging the Genetics of carotid stenosis for identifying novel risk factors and therapeutic opportunities
利用颈动脉狭窄的遗传学来识别新的危险因素和治疗机会
- 批准号:
10589557 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Impact of PCSK9 inhibition on abdominal aortic aneurysm pathobiology and growth
PCSK9 抑制对腹主动脉瘤病理学和生长的影响
- 批准号:
10566800 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
- 批准号:
10710159 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
- 批准号:
10409699 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
-- - 项目类别: