Leveraging the Genetics of carotid stenosis for identifying novel risk factors and therapeutic opportunities
利用颈动脉狭窄的遗传学来识别新的危险因素和治疗机会
基本信息
- 批准号:10589557
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsArteriesAtherosclerosisBiological MarkersBiologyBlood PressureBlood VesselsBrainCardiovascular DiseasesCarotid ArteriesCarotid Artery DiseasesCarotid Artery PlaquesCarotid Atherosclerotic DiseaseCarotid StenosisCerebrovascular DisordersCoronaryCoronary arteryCoronary heart diseaseDataData ScientistDevelopmentDiabetes MellitusDiseaseDisease ProgressionDisease susceptibilityDrug TargetingElectronic Health RecordEpidemiologistEquationGangreneGeneral PopulationGenesGeneticGenetic RiskGenetic studyGenomicsGenotypeGuidelinesHealthHeartHospitalizationImageInterventionIschemic StrokeKnowledgeLegLife StyleLinkMeasuresMediationMendelian randomizationMilitary PersonnelModelingModificationMorbidity - disease rateMyocardial InfarctionNatural Language ProcessingObesityOutcomePain in lower limbPathway interactionsPeripheralPeripheral arterial diseasePharmaceutical PreparationsPredispositionPreventionPrevention GuidelinesPrevention approachPrimary PreventionReportingRiskRisk FactorsRoleSample SizeSecondary PreventionSeveritiesSmokingStenosisStrokeStroke preventionSystemTherapeuticTherapeutic InterventionThickTimeUnited StatesVeteransWorkblood lipidcardiovascular disorder riskclinically significantdisorder subtypeend stage diseaseexperimental studygenetic architecturegenome wide association studygenome-widehealth datahigh riskimprovedindividualized medicinemodifiable riskmortalitynew therapeutic targetnovelpersonalized approachprecision medicinepreventprogramsrisk predictionrisk variantstatisticstherapeutic targettrait
项目摘要
Current guidelines for primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD),
including coronary heart disease (CHD), peripheral artery disease (PAD), and cerebrovascular disease, focus
on the uniform application of risk factor modification irrespective of CVD subtype, despite rising evidence that
each of these diseases has specific underlying pathobiology. Large scale genetic studies have identified new
biology, clarified the role of modifiable risk factors, improved risk prediction, and identified therapeutic targets for
CHD and PAD. This work has demonstrated vascular territory specific effects of risk factors and therapies,
motivating disease specific approaches to prevention and treatment of atherosclerotic cardiovascular disease.
Unfortunately, genetic studies of cerebrovascular disease have lagged. Extant studies have tended to focus on
either early-stage subclinical atherosclerosis (carotid intima to media thickness [cIMT]) or late-stage outcomes
(ischemic stroke). Studies of actual atherosclerotic cerebrovascular disease, in the form of carotid stenosis, have
been limited by small sample size.
The VA Million Veteran Program (MVP) was initiated in 2011 to study how genes, lifestyle, and military exposure
affect health and disease and offers a unique opportunity to advance the genetics of atherosclerotic
cerebrovascular disease through the study of carotid stenosis. To do this we have developed a validated natural
language processing (NLP) algorithm to extract quantitative measures of carotid stenosis severity from imaging
reports in the VA electronic health record (EHR), facilitating the study of both disease susceptibility and
progression. The overarching hypothesis of this proposal is that the development of carotid plaque, progression
of stenosis, and resulting ischemic stroke represent distinct pathobiological states, each offering a separate
opportunity for therapeutic intervention. To address this hypothesis, we will conduct genome-wide association
studies of both disease susceptibility and progression. The results from these analyses will be then used for
genetic causal inference experiments to: 1. Quantify the causal impact of traditional risk factors on the
susceptibility to carotid stenosis; 2. Determine the causal risk factors for the progression of carotid stenosis; and
3. Identify the shared genetic architecture of carotid stenosis and ischemic stroke using genomic structural
equation modeling.
Successfully completion of this project will clarify the role of traditional risk factors with carotid stenosis, identify
novel opportunities for prevention and treatment, and establish the basis for tailored, precision medicine
approaches to the treatment of carotid stenosis and stroke prevention for Veterans.
动脉粥样硬化性心血管疾病(ASCVD)一级和二级预防的现行指南,
包括冠心病(CHD)、外周动脉疾病(PAD)和脑血管疾病,重点
尽管越来越多的证据表明,无论 CVD 亚型如何,统一应用危险因素修正
这些疾病中的每一种都有特定的基础病理学。大规模遗传学研究发现了新的
生物学,阐明了可改变的危险因素的作用,改进了风险预测,并确定了治疗目标
冠心病和外周动脉疾病。这项工作证明了危险因素和治疗对血管区域的特定影响,
激发预防和治疗动脉粥样硬化性心血管疾病的特定疾病方法。
不幸的是,脑血管疾病的遗传学研究已经滞后。现有的研究往往集中于
早期亚临床动脉粥样硬化(颈动脉内膜至中层厚度 [cIMT])或晚期结果
(缺血性中风)。对颈动脉狭窄形式的实际动脉粥样硬化性脑血管疾病的研究
受到样本量较小的限制。
退伍军人管理局百万退伍军人计划 (MVP) 于 2011 年启动,旨在研究基因、生活方式和军事暴露如何影响
影响健康和疾病,并为促进动脉粥样硬化的遗传学提供了独特的机会
通过研究颈动脉狭窄来研究脑血管疾病。为此,我们开发了一种经过验证的天然
语言处理 (NLP) 算法从成像中提取颈动脉狭窄严重程度的定量测量值
VA 电子健康记录 (EHR) 中的报告,促进疾病易感性和疾病的研究
进展。该提案的总体假设是颈动脉斑块的形成、进展
狭窄和由此产生的缺血性中风代表了不同的病理生物学状态,每种状态都提供了单独的
治疗干预的机会。为了解决这个假设,我们将进行全基因组关联
疾病易感性和进展的研究。这些分析的结果将用于
遗传因果推理实验旨在: 1. 量化传统风险因素对
颈动脉狭窄的易感性; 2.确定导致颈动脉狭窄进展的危险因素;和
3. 利用基因组结构识别颈动脉狭窄和缺血性中风的共同遗传结构
方程建模。
该项目的成功完成将阐明传统危险因素与颈动脉狭窄的作用,确定
预防和治疗的新机会,并为量身定制的精准医疗奠定基础
治疗退伍军人颈动脉狭窄和预防中风的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Michael Damrauer其他文献
Scott Michael Damrauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Michael Damrauer', 18)}}的其他基金
Impact of PCSK9 inhibition on abdominal aortic aneurysm pathobiology and growth
PCSK9 抑制对腹主动脉瘤病理学和生长的影响
- 批准号:
10566800 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
- 批准号:
10710159 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
- 批准号:
10409699 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
- 批准号:
10295749 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
-- - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
-- - 项目类别: