Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
基本信息
- 批准号:10280126
- 负责人:
- 金额:$ 58.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAlgorithmsAnatomyBirthBrainCell ProliferationCell physiologyClassificationClinical TrialsCognitiveComplexCongenital DisordersDataData SetDevelopmentFetal DevelopmentFetusGestational AgeHeadHealth Care CostsHigh PrevalenceHumanHypoxiaImageImaging TechniquesImaging technologyInjuryInvestigationLifeLive BirthMagnetic Resonance ImagingManualsMeasuresMental HealthModelingMorphologic artifactsMothersMotionMulticenter StudiesNeurodevelopmental DisorderNeurologyNeuronsNeurosciencesNoiseOutcomePatient-Focused OutcomesPatientsPlayPositioning AttributeProcessPropertyReal-Time SystemsRelaxationReproducibilityResearchResolutionRoleRotationSamplingScanningSecond Pregnancy TrimesterSignal TransductionSiteSliceSpeedSystemTechniquesTechnologyTestingTherapeutic InterventionTimeTissuesTrainingTranslatingUterusabsorptionbrain tissuecognitive disabilitycongenital heart disorderconvolutional neural networkcost effectivedeep learningdensitydisabilityeffective therapyfetalfetus at riskimage processingimage reconstructionimaging studyimprovedin vivoin vivo imaginginnovationlarge datasetsmigrationmyelinationnervous system disorderneurodevelopmentneuroimagingnew technologynext generationnovelprenatalprospectivereal-time imagesreconstructionrecurrent neural networksuccessvirtual
项目摘要
Next-Generation In-Vivo Fetal Neuroimaging
The overall objective of this project is to dramatically improve fetal magnetic resonance imaging (MRI) to
advance research in early human brain development and neurodevelopmental disorders, the burden of which
is, unfortunately, high because of their life-long impact and high prevalence. Fetal MRI has been the technique
of choice in studying prenatal brain development. Fetal motion, however, makes MRI slice acquisition
unreliable at best, as the fetus frequently moves while the prescribed slices are imaged. Uncompensated fetal
motion disrupts 3D coverage of the anatomy and reduces the spatial resolution of slice-to-volume
reconstructions. Repeating the scans does not ensure full 3D coverage of the anatomy, but increases total
acquisition time. This, in turn, dramatically reduces the success rate and reliability of fetal MRI in studying the
development of transient fetal brain compartments that are selectively sensitive to injury over the course of
fetal development. To mitigate these issues and improve fetal MRI, we propose to automatically measure
fetal brain position and prospectively navigate slices to each new position in real-time. The impact of this
approach will be to dramatically increase the success rate and spatial resolution of fetal MRI for the in-vivo
investigation of developing brain compartments, while, in parallel, reducing scan time, effectively making fetal
MRI less burdensome for the mother, more accurate, and cost effective. By eliminating the manual re-
adjustment of stack-of-slice positions, the time that elapses between scans will be virtually continuous. Our
proposed technique will also make fetal MRI less operator-dependent and thus, more reproducible across
sites, which is essential to conducting multi-center studies and clinical trials. Prospective navigation of fetal
MRI slices to compensate for motion requires the development of novel, real-time image processing algorithms
to recognize the fetal brain and its position and orientation; to track fetal motion to steer slices; and to detect
and re-acquire motion corrupted slices. In this project, we will develop innovative deep learning models to
process fetal MRI slices in real-time; will translate those models into an integrated system to prospectively
navigate fetal MRI slices; and will validate the system on fetuses scanned at various gestational ages. To
assess the utility and impact of the proposed technology, we will measure subplate volume in fetuses. The four
specific aims of this study are to 1) assess fetal MRI via variable density image acquisition and reconstruction;
2) achieve real-time recognition of the fetal brain in MRI slices; 3) develop a system of real-time fetal head
motion tracking and steering of slices; and 4) measure the subplate volume in the developing fetal brain using
MRI. These aims will collectively translate and validate new imaging and image processing techniques to
advance fetal MRI, and effectively eliminate a critical barrier to making progress in the fields of developmental
neurology and neuroscience.
下一代体内胎儿神经影像
该项目的总体目标是显着改善胎儿磁共振成像 (MRI)
推进早期人类大脑发育和神经发育障碍的研究,其负担
不幸的是,由于其终生影响和高患病率,该比例很高。胎儿 MRI 已成为技术
研究产前大脑发育的首选。然而,胎儿运动使得 MRI 切片采集成为可能
充其量是不可靠的,因为在对规定的切片进行成像时胎儿经常移动。未代偿的胎儿
运动会破坏解剖结构的 3D 覆盖并降低切片到体积的空间分辨率
重建。重复扫描并不能确保解剖结构的完整 3D 覆盖,但会增加总数
采集时间。这反过来又大大降低了胎儿 MRI 研究胎儿的成功率和可靠性。
胎儿大脑区室的发育对胎儿发育过程中的损伤选择性敏感
胎儿发育。为了缓解这些问题并改善胎儿 MRI,我们建议自动测量
胎儿大脑位置并前瞻性地将切片实时导航到每个新位置。这的影响
方法将显着提高胎儿 MRI 体内检查的成功率和空间分辨率
研究发育中的脑室,同时减少扫描时间,有效地使胎儿
MRI 对母亲来说减轻了负担,更准确且更具成本效益。通过消除手动重新
通过调整切片堆栈位置,扫描之间经过的时间实际上是连续的。我们的
所提出的技术还将减少胎儿 MRI 对操作员的依赖性,从而在各个方面更具可重复性
站点,这对于进行多中心研究和临床试验至关重要。胎儿前瞻性导航
用于补偿运动的 MRI 切片需要开发新颖的实时图像处理算法
识别胎儿大脑及其位置和方向;跟踪胎儿运动以引导切片;并检测
并重新获取运动损坏的切片。在这个项目中,我们将开发创新的深度学习模型
实时处理胎儿 MRI 切片;将把这些模型转化为一个集成系统,以便前瞻性地
导航胎儿 MRI 切片;并将在不同胎龄扫描的胎儿上验证该系统。到
为了评估所提出技术的实用性和影响,我们将测量胎儿的底板体积。四个
本研究的具体目的是 1) 通过可变密度图像采集和重建评估胎儿 MRI;
2)实现MRI切片中胎儿大脑的实时识别; 3)开发实时胎头系统
切片的运动跟踪和转向; 4) 使用以下方法测量发育中的胎儿大脑中的亚板体积
核磁共振成像。这些目标将共同转化和验证新的成像和图像处理技术
推进胎儿MRI,有效消除发育领域取得进展的关键障碍
神经病学和神经科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI GHOLIPOUR-BABOLI其他文献
ALI GHOLIPOUR-BABOLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI GHOLIPOUR-BABOLI', 18)}}的其他基金
Imaging early development of human neural circuits
人类神经回路早期发育的成像
- 批准号:
10503458 - 财政年份:2022
- 资助金额:
$ 58.86万 - 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
- 批准号:
10684840 - 财政年份:2022
- 资助金额:
$ 58.86万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10580011 - 财政年份:2022
- 资助金额:
$ 58.86万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10345136 - 财政年份:2022
- 资助金额:
$ 58.86万 - 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
- 批准号:
10684840 - 财政年份:2022
- 资助金额:
$ 58.86万 - 项目类别:
Advancing microstructural and vascular neuroimaging in perinatal stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10332741 - 财政年份:2019
- 资助金额:
$ 58.86万 - 项目类别:
Advancing Microstructural and Vascular Neuroimaging in Perinatal Stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10552663 - 财政年份:2019
- 资助金额:
$ 58.86万 - 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
- 批准号:
9102082 - 财政年份:2014
- 资助金额:
$ 58.86万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
食欲素2型受体通过影响BACE2功能增加脑内Aβ产生加速阿尔茨海默病发生发展的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
PRAS40通过促进G6PI/PGK1/LDHA复合物的组装加速糖酵解进程对结直肠癌发生的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流相互作用区对太阳高能粒子加速和传输过程的影响
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
下游边界对磁重联出流区电子加速的影响
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 58.86万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 58.86万 - 项目类别:
Primary cell culture models of HIV/HBV co-infection
HIV/HBV合并感染的原代细胞培养模型
- 批准号:
10762093 - 财政年份:2023
- 资助金额:
$ 58.86万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 58.86万 - 项目类别:
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 58.86万 - 项目类别: