Algorithm-based prevention and reduction of cancer health disparity arising from data inequality
基于算法的预防和减少数据不平等引起的癌症健康差异
基本信息
- 批准号:10275989
- 负责人:
- 金额:$ 35.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAfrican AmericanAlgorithmsArchivesArtificial IntelligenceAsiansBenchmarkingBiomedical ResearchCaucasiansClinicalClinical ResearchCohort StudiesComputing MethodologiesDataData SetDatabasesDiagnosisDisadvantagedDistantEthnic groupEuropeanGenomicsGenotypeGoalsHealthcare SystemsHispanicsIndividualInequalityInformation Resources ManagementInternetKnowledgeLeadLearningMachine LearningMalignant NeoplasmsMedical GeneticsMinorityMinority GroupsModelingMultiomic DataOutcomePerformancePopulationPredictive AnalyticsPreventionPrognosisPsychological TransferRaceResearchResearch Project GrantsResourcesRetrievalSamplingSchemeSystemTestingThe Cancer Genome AtlasTherapeuticTrainingWorkbasecancer genomicscancer health disparitycancer riskcancer subtypescancer typecohortdatabase of Genotypes and Phenotypesdisorder riskethnic disadvantageethnic disparityethnic diversityethnic minority populationexperimental studygenetic architecturegenome wide association studygenomic datahealth disparityimprovedinnovationknowledge basemachine learning methodmulti-ethnicphenotypic dataprecision medicinepreventresearch studyresponsesecondary analysisself-directed learningstatisticsuser-friendly
项目摘要
Ethnic minority groups have a long-term cumulative data disadvantage in biomedical research and clinical
studies. Statistics have shown that over 90% of the samples in cancer-related GWAS and clinical omics projects
were collected from Individuals of European ancestry. This severe data disadvantage of the ethnic minority
groups is set to produce new health disparities as data-driven, algorithm-based biomedical research and clinical
decisions become increasingly common. The new cancer disparity arising from data inequality can potentially
impact all ethnic minority groups in all types of cancers where data inequality exists. Thus, its negative impact is
not limited to the cancer types or subtypes for which significant ethnic disparities have already been evident. The
long-term goal of the proposed research is to prevent or reduce the heath disparities arising from the data
disadvantage of ethnic minority groups. The overall objective of this work is to obtain key knowledge and create
open resources to establish a new paradigm for machine learning with multiethnic clinical omics data. Our central
hypothesis is that the knowledge learned from data of the majority population can be transferred to improve
machine learning performance on the data-disadvantaged ethnic minority groups. Guided by strong preliminary
data, we will pursuit two specific aims to 1) Discover from cancer clinical omics data and genotype-phenotype
data: under what conditions and to what extent the transfer learning scheme improves machine learning model
performance on data-disadvantaged ethnic minority groups; 2) Create an open resource system for unbiased
multiethnic machine learning to prevent or reduce new health disparities arising from the data disadvantage of
ethnic minorities. The approach is innovative because it represents a substantive departure from the status quo
by shifting the paradigm of multiethnic machine learning from mixture learning and independent learning
schemes to a transfer learning scheme. The proposed research is significant, because it is expected to establish
a new paradigm for unbiased multiethnic machine learning and to provide an open resource system to facilitate
the paradigm shift, and thus to prevent or reduce health disparities arising from the data disadvantage of ethnic
minorities.
少数族裔在生物医学研究和临床方面长期累积数据处于劣势
研究。统计显示,癌症相关GWAS和临床组学项目中90%以上的样本
是从欧洲血统的个体中收集的。少数民族的这种严重的数据劣势
随着数据驱动、基于算法的生物医学研究和临床研究,团体将产生新的健康差异
决策变得越来越普遍。由于数据不平等而产生的新的癌症差异可能会
影响存在数据不平等的所有类型癌症的所有少数民族群体。因此,其负面影响是
不限于已经明显存在显着种族差异的癌症类型或亚型。这
拟议研究的长期目标是防止或减少数据引起的健康差异
少数民族群体的劣势。这项工作的总体目标是获取关键知识并创造
开放资源,利用多种族临床组学数据建立机器学习的新范例。我们的中央
假设是从大多数人口的数据中学到的知识可以转移以改进
数据弱势族裔群体的机器学习表现。强有力的前期引导
数据,我们将追求两个具体目标:1)从癌症临床组学数据和基因型-表型中发现
数据:迁移学习方案在什么条件下以及在多大程度上改进了机器学习模型
数据处于弱势的少数族裔群体的表现; 2)创建公正的开放资源系统
多种族机器学习,以防止或减少因数据劣势而产生的新的健康差异
少数民族。这种方法是创新的,因为它代表了对现状的实质性背离
通过将多民族机器学习的范式从混合学习和独立学习转变
方案到迁移学习方案。拟议的研究意义重大,因为预计将建立
公正的多民族机器学习的新范式,并提供开放资源系统以促进
范式转变,从而防止或减少因种族数据劣势而产生的健康差异
少数民族。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAN CUI其他文献
YAN CUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAN CUI', 18)}}的其他基金
Targeting the CD73-adenosinergic pathway in head and neck cancer
靶向头颈癌中的 CD73 腺苷能通路
- 批准号:
10813613 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Algorithm-based prevention and reduction of cancer health disparity arising from data inequality
基于算法的预防和减少数据不平等引起的癌症健康差异
- 批准号:
10673024 - 财政年份:2021
- 资助金额:
$ 35.23万 - 项目类别:
CD73 expression on cancer-associated fibroblasts of Head and Neck Cancers shapes the immune landscape
头颈癌癌症相关成纤维细胞上的 CD73 表达塑造免疫景观
- 批准号:
9912757 - 财政年份:2019
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8692674 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
9248356 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8868065 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8577716 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
In vivo targeted DC vaccine to activate anti-tumor CTL
体内靶向DC疫苗激活抗肿瘤CTL
- 批准号:
7913511 - 财政年份:2009
- 资助金额:
$ 35.23万 - 项目类别:
OVERCOMING TUMOR TOLERANCE THROUGH IN VIVO GENERATED DENDRITIC CELLS
通过体内生成的树突状细胞克服肿瘤耐受性
- 批准号:
7720483 - 财政年份:2008
- 资助金额:
$ 35.23万 - 项目类别:
LSUHSC COBRE:PROJ 2: OVERCOMING TUMOR TOLER THROUGH IN VIVO GEN* DENDRITIC CELLS
LSUHSC COBRE:项目 2:通过 VIVO GEN* 树突状细胞克服肿瘤耐受性
- 批准号:
7610786 - 财政年份:2007
- 资助金额:
$ 35.23万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Pathogenic T cells in discoid lupus erythematosus
盘状红斑狼疮中的致病性 T 细胞
- 批准号:
10664134 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Using a Health Disparity Research Framework to examine mechanisms linking Obstructive Sleep Apnea with higher Alzheimer’s disease risk in older Blacks/African-Americans
使用健康差异研究框架来研究老年黑人/非裔美国人中阻塞性睡眠呼吸暂停与阿尔茨海默病较高风险之间的联系机制
- 批准号:
10662903 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Simulating Ancestrally Unbiased Tumor Evolution To Interrogate Drug Resistance
模拟祖先无偏见的肿瘤进化来询问耐药性
- 批准号:
10687776 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Using a Health Disparity Research Framework to examine mechanisms linking Obstructive Sleep Apnea with higher Alzheimer’s disease risk in older Blacks/African-Americans
使用健康差异研究框架来研究老年黑人/非裔美国人中阻塞性睡眠呼吸暂停与阿尔茨海默病较高风险之间的联系机制
- 批准号:
10662903 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别: