Pediatric Heart Valve with Expansion Capability
具有扩张功能的儿科心脏瓣膜
基本信息
- 批准号:10157591
- 负责人:
- 金额:$ 25.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdipose tissueAdolescentAdultAgeAngioplastyAnimalsAnticoagulationAreaAutologousAutologous TransplantationBalloon AngioplastyBiochemicalBiologicalBiomedical EngineeringBioprosthesis deviceBioreactorsBody SizeBusinessesCaliberCardiac Surgery proceduresCardiologyCell SurvivalCellsCellular biologyChildChildhoodClinical TrialsCongenital Heart DefectsConsultDataDefectDevelopmentDevicesElementsEndothelial CellsEndotheliumEnsureExtracellular MatrixFaceFamilyFamily suidaeFibroblastsFrequenciesGlutaralGrowthHeart AbnormalitiesHeart Valve ProsthesisHeart ValvesHomeostasisHumanImplantIn VitroInfantInterventionLeadershipLegal patentLifeMeasuresMechanicsMedicalMetabolismMindMinorModificationMolecularMotionOperating RoomsOperative Surgical ProceduresPatientsPharmaceutical PreparationsPhasePhenotypePhysiologicalPopulationPreparationProceduresProcessProsthesisProtocols documentationQuality ControlQuality of lifeRegulatory AffairsResearchRiskSafetySavingsSeedsServicesSeveritiesShapesSheepSourceSouth CarolinaStainless SteelStentsSterilityStructureSurfaceSurgeonTestingTimeTissue EngineeringTissuesUnited StatesUniversitiesVisitVisualWorkaortic valvebasecalcificationcostdesignefficacy validationexperiencefirst-in-humanheart valve replacementhemodynamicshomograftimplantationimprovedin vitro regenerationmechanical propertiesmembermillimeternitinolnoveloperationpatient populationpediatric patientspericardial sacpreservationpressureproduct developmentprototyperepair modelrepairedresponsescaffoldstem cell derived tissuessuccessthrombogenesisvalve replacement
项目摘要
PROJECT SUMMARY - PEDIATRIC HEART VALVE WITH EXPANSION CAPABILITY
Congenital heart valve defects are detected in nearly 40,000 infants born in the United States each year (Alsoufi
2014). The heart valve defect can range in severity, with about 25% of cases (about 13,000) requiring immediate open-
heart surgery to replace the valve or other heart defects. Currently, there is no surgical heart valve prosthesis that meets
the size, flow, and developmental needs of infants (Alsoufi 2014). Options include mechanical, bioprosthetic, homograft,
or autograft (Ross procedure) valves. However, the most commonly used, mechanical and bioprosthetic valves, are
designed with adults in mind (Schoen 2018). Thus, surgeons must alter the structure of the valve in the operating room
effectively altering the hemodynamic profile and minimizing the flow potential. In addition, mechanical and bioprosthetic
valves are stagnant, meaning that children often face patient-prosthesis mismatch and multiple operations as a result of
their somatic growth (David 2016). Outside of growth, mechanical valves require life-long anticoagulation medication
and bioprosthetic valves tend to undergo structural valve degeneration (Schoen 2018).
In response, our team hypothesized that a replacement heart valve that can increase in size with a growing child
and that can repair and model itself to last the child’s lifetime will greatly improve the quality of life of this patient
population. The research team is composed of Dr. Leslie Sierad with expertise in bioreactor development and
manufacturing, Dr. Dan Simionescu with expertise in valve design, scaffolds and cell seeding, Dr. Minoo Kavarana with
extensive expertise in surgical approaches to treatment of congenital heart defects, and Dr. David Orr with experience in
business development and regulatory affairs.
To this end, we are proposing to manufacture and test stent valve prototypes that can increase in size from 12mm
to 24mm through up to 4 balloon angioplasty interventions, each step increasing the diameter by 3 mm. The design will
incorporate acellular pericardium as the biological tissue leaflets or cusps, tested for proper hemodynamics (specific Aim
1). In the second stage, the tissues will be seeded with human fibroblasts and endothelial cells obtained by in vitro
differentiation of human adipose-tissue derived stem cells. The living valve prototype will be tested through “mock”
implantation and expansion in a heart valve bioreactor already developed and patented by Aptus Bioreactors (specific
Aim 2). During and after bioreactor testing, we will validate valve leaflets motions and hemodynamics, tissue mechanical
properties, cell viability and phenotype. These studies will provide substantial proof of concept in support of the device
and generate data in support of a Phase II large animal study which will utilize autologous cells for seeding of the leaflets
and implantation of the expandable valves in juvenile sheep for safety and efficacy validation. Successful completion of
these studies will set the basis for definitive product development and first-in-human clinical trials.
项目摘要 - 具有扩展功能的儿科心脏瓣膜
美国每年出生的近 40,000 名婴儿中检测出先天性心脏瓣膜缺陷(Alsoufi
2014)心脏瓣膜缺损的严重程度各不相同,约 25% 的病例(约 13,000 例)需要立即开放。
心脏手术来更换瓣膜或其他心脏缺陷 目前,还没有符合手术心脏瓣膜的假体。
婴儿的大小、流量和发育需求(Alsoufi 2014)选项包括机械、生物假体、同种移植、
然而,最常用的是机械瓣膜和生物瓣膜。
设计时考虑到了成人(Schoen 2018),因此,外科医生必须改变手术室中瓣膜的结构。
有效改变血流动力学特征并最大限度地减少血流潜力。此外,机械和生物假体。
瓣膜停滞,这意味着儿童经常面临患者与假体不匹配以及因以下原因进行的多次手术:
除了生长之外,机械瓣膜还需要终生抗凝药物。
生物瓣膜往往会发生结构性瓣膜退化(Schoen 2018)。
作为回应,我们的团队开发了一种替代心脏瓣膜,可以随着儿童的成长而增大尺寸
并且可以自我修复和建模以持续孩子的一生,这将极大地改善该患者的生活质量
该研究团队由 Leslie Sierad 博士组成,具有生物反应器开发和研究方面的专业知识。
Dan Simionescu 博士拥有阀门设计、支架和细胞接种方面的专业知识,Minoo Kavarana 博士拥有
David Orr 博士在治疗先天性心脏缺陷的手术方法方面拥有丰富的专业知识,并且在以下领域拥有丰富的经验:
业务发展和监管事务。
为此,我们建议制造和测试尺寸可以从 12mm 增加的支架瓣膜原型
通过多达 4 次球囊血管成形术干预,直径可增加至 24 毫米,每一步都会使直径增加 3 毫米。
将无细胞心包作为生物组织小叶或尖瓣,并测试适当的血流动力学(具体目标
1) 第二阶段,将体外获得的人成纤维细胞和内皮细胞接种到组织中。
人类脂肪组织干细胞的分化将通过“模拟”进行测试。
Aptus Bioreactors 已开发并获得专利的心脏瓣膜生物反应器中的植入和扩张(具体
目标 2)。在生物反应器测试期间和之后,我们将验证瓣叶运动和血流动力学、组织力学。
这些研究将为支持该设备提供实质性的概念证明。
并生成支持 II 期大型动物研究的数据,该研究将利用自体细胞播种传单
并在幼年羊身上植入可扩张瓣膜以验证安全性和有效性。
这些研究将为最终的产品开发和首次人体临床试验奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie Neil Sierad其他文献
Leslie Neil Sierad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Addressing Lumbar Puncture Challenges Using Patch Ultrasound and Augmented Reality
使用贴片超声和增强现实解决腰椎穿刺挑战
- 批准号:
10258250 - 财政年份:2021
- 资助金额:
$ 25.21万 - 项目类别:
Investigating the Role of Hypoxic Signaling on Adipose-Derived Stem Cell Osteogenesis
研究缺氧信号对脂肪干细胞成骨的作用
- 批准号:
9910771 - 财政年份:2020
- 资助金额:
$ 25.21万 - 项目类别: