Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
基本信息
- 批准号:10595510
- 负责人:
- 金额:$ 62.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease riskBiologicalBiological ModelsBiotechnologyCommunitiesComplexComputer softwareComputing MethodologiesDataData AnalysesDevelopmentDiseaseDocumentationEarly DiagnosisEnvironmentEquationEtiologyGene ExpressionGenesGenetic DiseasesGenomicsGenotypeGraphInterventionInvestigationLeast-Squares AnalysisLipidsLiteratureMendelian randomizationMethodologyMethodsModelingNeurodegenerative DisordersPathway interactionsPreventionProcessPublic DomainsPythonsRegulator GenesRegulatory PathwayResearchResearch PersonnelRisk FactorsRoleSample SizeSchemeSingle Nucleotide PolymorphismStatistical ComputingStatistical MethodsTestingUncertaintyWritingcausal variantcomputerized toolsdeep neural networkgene regulatory networkgenetic variantgenome wide association studygenome-widehigh dimensionalityinnovationinstrumentinterestmultidimensional dataneuralnovelphenotypic datapleiotropismpower analysisprogramsreconstructionsoftware developmenttheoriestherapeutic developmenttooltraittranscriptometreatment strategyweb site
项目摘要
Summary
As biotechnology advances, biomedical investigations have become more complex due to high-throughput and
high-dimensional data collected at a genomic scale. Of paramount importance is unraveling the regulatory roles
of genetic variants on genes and gene-to-gene regulatory relationships. On this ground, biomedical researchers
can identify causal Single-Nucleotide Polymorphisms (SNPs) and genes for complex traits and neurodegenerative
diseases such as Alzheimer's disease (AD) to develop treatment strategies. Given the urgent need to under-
stand the progression and etiology of these diseases, particularly AD, the PIs propose to develop statistical and
computational tools for accurate estimation and inference of gene regulatory networks, with a focus on AD and
other complex traits.
The project consists of two major components: estimation and inference of gene regulatory networks with
SNPs as instrumental variables (IVs). The main thrust will be on causal network reconstruction and inference
with IVs as interventions in the possible presence of invalid IVs and hidden confounders, with particular effort
on high-dimensional data, in which the number of variables may exceed the sample size. Concerning causal
network reconstruction, the project will develop novel methods of reconstructing gene regulatory networks as
directed acyclic graphs describing casual relationships among the SNPs (interventions), genes, and traits such
as AD. The project will develop high-dimensional inferential tools based on modified likelihood ratio tests and a
data perturbation scheme to account for the uncertainty involved in a discovery process. Moreover, it will focus
on hypothesis testing on (1) the directionality and strength of multiple (linear/nonlinear) causal relations and (2)
the presence of a pathway of causal relations. Computationally, the project will develop innovative methods and
algorithms for large-scale problems. For application, based on the reconstructed gene regulatory networks, we
will first identify causal genes for AD and AD's risk factors, such as lipids, then infer which of the risk factors are
(putatively) causal to AD.
概括
随着生物技术的进步,由于高通量和
高维数据以基因组量表收集。至关重要的是揭开监管角色
基因和基因对基因调节关系的遗传变异。以此为基础,生物医学研究人员
可以鉴定复杂性状和神经退行性的因果单核苷酸多态性(SNP)和基因
阿尔茨海默氏病(AD)等疾病以制定治疗策略。考虑到迫切需要不足
具有这些疾病的进展和病因,尤其是AD的PIS提议,以发展统计和
用于准确估计和推断基因调节网络的计算工具,重点是AD和
其他复杂的特征。
该项目由两个主要组成部分组成:基因调节网络的估计和推断
SNP作为仪器变量(IVS)。主要推力将在因果网络重建和推理上
在可能存在无效的IV和隐藏的混杂因素的情况下,将IV作为干预措施,特别努力
在高维数据上,其中变量的数量可能超过样本量。关于催化
网络重建,该项目将开发新的方法,将基因调节网络重建为
定向的无环图描述了SNP(干预措施),基因和特质之间的休闲关系
作为广告。该项目将根据修改的似然比测试和A开发高维的推论工具
数据扰动方案说明发现过程中涉及的不确定性。而且,它将集中
关于(1)多个(线性/非线性)因果关系的定向性和强度的假设检验和(2)
因果关系途径的存在。在计算上,该项目将开发创新的方法和
大规模问题的算法。对于应用,基于重建的基因调节网络,我们
将首先确定AD和AD危险因素(例如脂质)的因果基因,然后推断哪些危险因素是
(推定)AD的因果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Pan其他文献
Wei Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Pan', 18)}}的其他基金
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 62.36万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10267373 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10483117 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10358645 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Integrating Alzheimer's disease GWAS with proteomic and metabolomic QTL data
将阿尔茨海默病 GWAS 与蛋白质组学和代谢组学 QTL 数据整合
- 批准号:
10018279 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10647797 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10561609 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10088703 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10116249 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10267714 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别: