Integrated prediction of cardiovascular events by automated coronary plaque and pericoronary adipose tissue quantification from CT Angiography
通过 CT 血管造影自动定量冠脉斑块和冠周脂肪组织来综合预测心血管事件
基本信息
- 批准号:10595673
- 负责人:
- 金额:$ 69.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adipose tissueAlgorithmsAmericanAngiographyArterial Fatty StreakArteriesArtificial IntelligenceAtherosclerosisCardiac DeathCardiovascular systemCause of DeathCessation of lifeCharacteristicsClinicalClinical DataClinical TrialsClinical assessmentsComplexConsumptionCoronaryCoronary ArteriosclerosisCoronary StenosisCoronary arteryDataDepositionEventFutureHospitalsHourImaging TechniquesIndividualLanguageLongterm Follow-upMachine LearningManualsMeasurementMeasuresMedical centerMyocardial InfarctionPatient riskPatient-Focused OutcomesPatientsPhysiciansPrognosisRegistriesReproducibilityResearchResearch PersonnelRiskRuptureScanningSeveritiesSiteStandardizationStenosisSymptomsTestingTimeTreesValidationVisualWorkacute coronary syndromearmcardiovascular risk factorclinically significantcomputerizedcoronary calcium scoringcoronary computed tomography angiographycoronary eventcoronary plaquedensityexperiencefollow-upheart imaginghigh riskhigh risk populationimage processingimprovedindexingindividual patientmachine learning methodmachine learning predictionmortalitynoninvasive diagnosisnovelpatient registryprognostic significanceprognostic valueprospectiverisk prediction
项目摘要
PROJECT SUMMARY
Coronary artery disease remains the leading cause of death worldwide, and more than half of the individuals
suffering myocardial infarction (heart attacks) have no premonitory symptoms. Studies of patients with
coronary artery disease have traditionally focused only on the severity of narrowing (stenosis) of the coronary
arteries by atherosclerotic plaques, rather than the adverse features of coronary plaques which are
predisposed to rupture and precipitate myocardial infarction. Coronary CT Angiography (CTA) is a noninvasive
test that allows assessment of both coronary stenosis and plaque characteristics. Currently, however, CTA is
interpreted visually for stenosis. Quantitative measurements of CTA stenosis severity and plaque features are
not part of current clinical routine.
We propose to develop novel image processing algorithms for fully automated, robust quantification of
coronary plaque features from CTA. We also propose to automatically quantify the characteristics of adipose
tissue around the coronary arteries (pericoronary adipose tissue, PCAT), which have been shown to
differentiate rupture-prone, high-risk coronary plaques from stable ones. We propose to apply machine
learning methods to efficiently combine stenosis, plaque and PCAT features, along with patient clinical data,
into a new integrated risk score for the prediction of future adverse cardiovascular events. We will evaluate this
risk score in the real-world, prospective, landmark SCOT-HEART trial (including all 2073 patients in the
CTA arm of the trial), with added external validation in large multicenter patient registries, with available CTA
scans, clinical data, and followup for cardiovascular events (fatal and non-fatal myocardial infarction and
cardiovascular death in a grand total of 7844 patients). We propose three specific aims:
1) To refine, expand and automate measurements of coronary plaque and lumen for the entire coronary artery
tree, and to standardize measurement of plaque changes in serial CTA;
2) To evaluate the prognostic value of automatically-quantified plaque features and PCAT characteristics for
the prediction of future MACE in the prospective SCOT-HEART trial and multicenter CTA registries;
3) To develop and evaluate with full external validation a new automated patient risk score—combining
patient clinical data, CTA-measured quantitative plaque features and PCAT characteristics, using machine
learning—for the prediction of future MACE events in the prospective SCOT-HEART trial and multicenter CTA
registries.
The proposed work will enable automated, multi-faceted and reproducible analysis of plaque, stenosis and
PCAT from CTA, combined with objective risk scores reflecting likelihood of adverse cardiovascular events.
This work will provide a novel, personalized, real-world paradigm that objectively and accurately identifies
individual patients at risk of future cardiovascular events, from routine CTA imaging.
项目摘要
冠状动脉疾病仍然是全球死亡的主要原因,超过一半的人
遭受心肌梗塞(心脏病发作)没有前症状。患者的研究
传统上,冠状动脉疾病仅集中在冠状动脉狭窄(狭窄)的严重程度上
动脉粥样硬化斑块的动脉,而不是冠状动脉斑块的不利特征
冠状动脉血管造影(CTA)是无创的
允许评估冠状动脉狭窄和斑块特征的测试。但是,目前CTA是
在视觉上解释为狭窄。 CTA狭窄严重程度和斑块特征的定量测量是
不是当前临床常规的一部分。
我们建议开发新的图像处理算法,以完全自动化,可靠的数量
CTA的冠状斑块特征。我们还建议自动量化脂肪的特征
周围的组织周围的冠状动脉(周围脂肪组织,PCAT),已显示为
区分易于破裂的高风险冠状斑与稳定的斑块。我们建议使用机器
有效地结合狭窄,斑块和PCAT特征的学习方法以及患者的临床数据
作为预测未来不良心血管事件的新综合风险评分。我们将评估这个
现实世界中的潜在,具有里程碑意义的苏格兰心脏试验中的风险评分(包括所有2073名患者
试验的CTA组),并在大型多中心患者注册表中增加了外部验证,可用CTA
扫描,临床数据和心血管事件的随访(致命和非致命心肌梗塞以及
总共7844名患者的心血管死亡)。我们提出了三个具体目标:
1)整个冠状动脉的冠状牙菌斑和管腔的完善,扩展和自动测量
树,并标准化串行CTA斑块变化的测量;
2)评估自动量化牌匾特征和PCAT特征的预后价值
预期的Scot-Heart试验和多中心CTA登记处的未来狼牙棒的预测;
3)通过全面的外部验证开发和评估新的自动化患者风险评分 - 结合
使用机器的患者临床数据,CTA测量的定量牌匾特征和PCAT特征
学习 - 预测未来的梅斯事件在潜在的Scot-Heart试验和多中心CTA中
登记处。
拟议的工作将使牙菌斑,狭窄和
来自CTA的PCAT,结合了反映不良心血管事件的可能性的客观风险评分。
这项工作将提供一个新颖,个性化的现实世界范式,客观,准确地识别
常规CTA成像的个体患者有未来心血管事件的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damini Dey其他文献
Damini Dey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damini Dey', 18)}}的其他基金
Integrated prediction of cardiovascular events by automated coronary plaque and pericoronary adipose tissue quantification from CT Angiography
通过 CT 血管造影自动定量冠脉斑块和冠周脂肪组织来综合预测心血管事件
- 批准号:
10165813 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
Integrated prediction of cardiovascular events by automated coronary plaque and pericoronary adipose tissue quantification from CT Angiography
通过 CT 血管造影自动定量冠脉斑块和冠周脂肪组织来综合预测心血管事件
- 批准号:
10376868 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
Integrated prediction of cardiovascular events by automated coronary plaque and pericoronary adipose tissue quantification from CT Angiography
通过 CT 血管造影自动定量冠脉斑块和冠周脂肪组织来综合预测心血管事件
- 批准号:
9981397 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
Effect of Intensive Medical Treatment on Quantified Coronary Artery Plaque Components with Serial Coronary CTA in Women with Non-Obstructive CAD
强化治疗对非阻塞性 CAD 女性连续冠状动脉 CTA 量化冠状动脉斑块成分的影响
- 批准号:
10247453 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
Effect of Intensive Medical Treatment on Quantified Coronary Artery Plaque Components with Serial Coronary CTA in Women with Non-Obstructive CAD
强化治疗对非阻塞性 CAD 女性连续冠状动脉 CTA 量化冠状动脉斑块成分的影响
- 批准号:
9924375 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
Integrated prediction of cardiovascular events by automated coronary plaque and pericoronary adipose tissue quantification from CT Angiography
通过 CT 血管造影自动定量冠脉斑块和冠周脂肪组织来综合预测心血管事件
- 批准号:
10808284 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
Effect of Intensive Medical Treatment on Quantified Coronary Artery Plaque Components with Serial Coronary CTA in Women with Non-Obstructive CAD
强化治疗对非阻塞性 CAD 女性连续冠状动脉 CTA 量化冠状动脉斑块成分的影响
- 批准号:
10685609 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
Effect of Intensive Medical Treatment on Quantified Coronary Artery Plaque Components with Serial Coronary CTA in Women with Non-Obstructive CAD
强化治疗对非阻塞性 CAD 女性连续冠状动脉 CTA 量化冠状动脉斑块成分的影响
- 批准号:
10470831 - 财政年份:2020
- 资助金额:
$ 69.52万 - 项目类别:
AUTOMATIC QUANTITATIVE CT IMAGING OF PERICARDIAL FAT: A NOVEL ISCHEMIA PREDICTOR
心包脂肪自动定量 CT 成像:一种新型缺血预测指标
- 批准号:
7588839 - 财政年份:2008
- 资助金额:
$ 69.52万 - 项目类别:
AUTOMATIC QUANTITATIVE CT IMAGING OF PERICARDIAL FAT: A NOVEL ISCHEMIA PREDICTOR
心包脂肪自动定量 CT 成像:一种新型缺血预测指标
- 批准号:
7470355 - 财政年份:2008
- 资助金额:
$ 69.52万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 69.52万 - 项目类别:
Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
- 批准号:
10759110 - 财政年份:2023
- 资助金额:
$ 69.52万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 69.52万 - 项目类别:
Treating early type 2 diabetes by reducing postprandial glucose excursions: A paradigm shift in lifestyle modification
通过减少餐后血糖波动来治疗早期 2 型糖尿病:改变生活方式的范式转变
- 批准号:
10517020 - 财政年份:2022
- 资助金额:
$ 69.52万 - 项目类别:
Treating early type 2 diabetes by reducing postprandial glucose excursions: A paradigm shift in lifestyle modification
通过减少餐后血糖波动来治疗早期 2 型糖尿病:改变生活方式的范式转变
- 批准号:
10634724 - 财政年份:2022
- 资助金额:
$ 69.52万 - 项目类别: