Polarity, growth, and morphogenesis of epithelia

上皮细胞的极性、生长和形态发生

基本信息

  • 批准号:
    10548124
  • 负责人:
  • 金额:
    $ 81.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Epithelia are the core cell type of animals, and constitute the most widespread and ancient mode of tissue architecture. Defects in epithelial organization, growth, or morphogenesis underlie a variety of medically devastating disorders, from birth defects to cancer. To understand the biology of humans as well as the rest of the animal kingdom, we need to understand how epithelia take on their distinctive form and how this form enables function. My lab uses a distinctive set of multidisciplinary strategies to investigate these questions in Drosophila, leveraging the deep evolutionary conservation of epithelial biology to uncover general principles applicable across phylogeny. The research described in this MIRA application tackles three fundamental problems of epithelial biology, ranging from the cellular to the tissue and organ scales. First, how are epithelial cells polarized into complementary apical and basolateral domains? Our previous work defined the Scribble module as a basolateral regulator that antagonizes the apical Par complex, but basic questions of the role, relationship, and effector partners of the Scrib proteins remain unanswered, as are the molecular mechanisms that link polarity regulators to the core cellular trafficking machinery. Second, what mechanisms couple growth control in epithelial tissues to cell polarity? We and others have shown that polarity disruption by genetic or physical means activates mitogenic signaling, suggesting that epithelial integrity is an intrinsic control system used to maintain proper size and ensure repair. But how breaches in epithelial homeostasis are detected to trigger proliferation is not understood. Third, how do 3D, multicomponent organs acquire their distinctive shapes? Current paradigms emphasizing cell-autonomous Myosin II contractility derive from analyzing 2D cellular sheets. By studying a simple 3D tube-like organ, we have uncovered multiple novel phenomena including a new morphogenetic movement and an unappreciated mechanism for organ shaping involving extracellular matrix stiffness. Major gaps exist in understanding how cellular and extracellular forces are integrated to drive specific cell behaviors; our expertise uniquely positions us to close these gaps and approach an in toto understanding of organ morphogenesis. The proposed experiments tackle these questions by combining the traditional strengths of Drosophila genetics with new tools with advanced imaging, collaborations with physical scientists, and the development of novel experimental systems. Our results will enhance our understanding of the conserved mechanisms that generate functional epithelial organs during development, and may provide new insights into diseases of epithelial origin.
上皮是动物的核心细胞类型,构成最广泛,最古老的组织模式 建筑学。上皮组织,生长或形态发生的缺陷是多种医学上的基础 从出生缺陷到癌症的毁灭性疾病。了解人类的生物学以及其余的 动物王国,我们需要了解上皮在其独特的形式以及这种形式如何启用的方式 功能。我的实验室使用一组独特的多学科策略来研究果蝇中的这些问题, 利用上皮生物学的深度进化保护揭示适用的一般原则 跨系统发育。 MIRA应用中描述的研究解决了三个基本问题 上皮生物学,从细胞到组织和器官尺度。 首先,上皮细胞如何极化为互补的顶端和基底外侧结构域?我们以前的工作 将涂鸦模块定义为拮抗顶端par复合物但基本的基底外侧调节器 SCRIB蛋白的角色,关系和效应伙伴的问题仍然没有得到解答, 将极性调节因子与核心细胞运输机制联系起来的分子机制。第二,什么 机制将上皮组织中的生长控制与细胞极性?我们和其他人表明了极性 通过遗传或物理手段破坏会激活有丝分裂信号传导,表明上皮完整性是一种 用于维持适当尺寸并确保维修的内在控制系统。但是如何在上皮中违反 检测到稳态以触发增生。第三,如何3D,多组件器官 获得独特的形状?当前强调细胞自主肌球蛋白II收缩力得出的范式 通过分析2D细胞片。通过研究简单的3D管状器官,我们发现了多个小说 现象包括新的形态发生运动和器官塑形的未欣赏机制 涉及细胞外基质刚度。理解细胞和细胞外力的主要差距 集成以驱动特定的细胞行为;我们的专业知识独特地定位了我们缩小这些差距,并 接近对器官形态发生的理解。 提出的实验通过结合果蝇遗传学的传统优势来解决这些问题 借助具有高级成像的新工具,与物理科学家的合作以及新颖的新工具 实验系统。我们的结果将增强我们对产生的保守机制的理解 开发过程中功能性上皮器官,并可能为上皮起源疾病提供新的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Bilder其他文献

David Bilder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Bilder', 18)}}的其他基金

Molecular Biology Across Scales Training Program
跨尺度分子生物学培训计划
  • 批准号:
    10555915
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
Polarity, growth, and morphogenesis of epithelia
上皮细胞的极性、生长和形态发生
  • 批准号:
    10312799
  • 财政年份:
    2019
  • 资助金额:
    $ 81.97万
  • 项目类别:
Shaping of simple organ by anisotropic biomechanical forces
通过各向异性生物力学力塑造简单器官
  • 批准号:
    8736405
  • 财政年份:
    2014
  • 资助金额:
    $ 81.97万
  • 项目类别:
Shaping of simple organ by anisotropic biomechanical forces
通过各向异性生物力学力塑造简单器官
  • 批准号:
    9329300
  • 财政年份:
    2014
  • 资助金额:
    $ 81.97万
  • 项目类别:
Shaping of simple organ by anisotropic biomechanical forces
通过各向异性生物力学力塑造简单器官
  • 批准号:
    9125853
  • 财政年份:
    2014
  • 资助金额:
    $ 81.97万
  • 项目类别:
PQ6 MECHANISMS OF CACHEXIA LIKE WASTING IN A DROSPHILA CANCER MODEL
果蝇癌症模型中恶病质样消瘦的 PQ6 机制
  • 批准号:
    8591196
  • 财政年份:
    2013
  • 资助金额:
    $ 81.97万
  • 项目类别:
Mechanisms of Drosophila Tumor Suppression
果蝇肿瘤抑制机制
  • 批准号:
    8300880
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Mechanisms of Drosophila Tumor Suppression
果蝇肿瘤抑制机制
  • 批准号:
    8128659
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Mechanisms of Drosophila Tumor Suppression
果蝇肿瘤抑制机制
  • 批准号:
    7991886
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Mechanisms of Drosophila Tumor Suppression
果蝇肿瘤抑制机制
  • 批准号:
    8511701
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:

相似国自然基金

髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
  • 批准号:
    82372496
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
  • 批准号:
    32300829
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
脊椎动物胚胎发育单细胞磷酸化蛋白质组高通量高灵敏度分析新技术新方法
  • 批准号:
    22374084
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新疆旱獭等啮齿动物携带病毒的病原学与病原生态学研究
  • 批准号:
    32300424
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
  • 批准号:
    10730981
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
Molecular mechanisms underlying renal lipotoxicity and DKD progression
肾脂毒性和 DKD 进展的分子机制
  • 批准号:
    10629589
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
Measuring and Modeling the Effects of Reticular Lamina Flexibility on Outer Hair Cell Bundle Phase and Cochlear Amplification
测量和模拟网状层灵活性对外毛细胞束相位和耳蜗放大的影响
  • 批准号:
    10676401
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
Illuminating apical extracellular matrix structure and biogenesis
阐明顶端细胞外基质结构和生物发生
  • 批准号:
    10654029
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了