Understanding the Microcircuits in Monkey Sensory Cortices: a Connectomic Approach
了解猴子感觉皮层的微电路:连接组学方法
基本信息
- 批准号:10546501
- 负责人:
- 金额:$ 12.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAmblyopiaAreaAutomobile DrivingBrainBrain regionCell DensityCellsCentral Auditory Processing DisorderCerebral cortexCharacteristicsCommunitiesConfocal MicroscopyDataDevelopmentDiseaseDyslexiaElectron MicroscopyGoalsIndividualIonsKnowledgeLabelLinkMacacaMeasuresMethodsMissionModelingMonkeysMorphologyNeurodevelopmental DisorderNeuronsOutcomePerformancePopulationPredispositionPresynaptic TerminalsProcessPropertyPublic HealthPublicationsReportingResearchResearch SupportResolutionRoleScanning Electron MicroscopySchizophreniaScholarshipSensorySensory DisordersStructureSurfaceSynapsesSystemTechnologyTestingThalamic structureThinkingUnited States National Institutes of HealthWorkcell typeconnectomeconnectome datadensitydesignexcitatory neuronimaging Segmentationinhibitory neuroninter-individual variationlarge scale datanonhuman primatepopulation basedreconstructionsensory cortexsomatosensoryspecies difference
项目摘要
Abstract
The development of serial confocal and electron-microscopy (EM), and automated image
segmentation have allowed us to elucidate some of the structural details of the cortical circuit at the
cellular and synaptic level. This information is critical because there is a close link between the
morphological properties of circuits in different brain areas and their function. It is broadly accepted that
the canonical microcircuit of the cortex is a repeating motif across cortex. Once the structure and
function in the local motif is understood this could be applied across all of cortex. However, recently it
has been shown that there are major laminar, areal and species differences that need to be taken into
account by this model. Another important feature of the canonical circuit in sensory areas is that the
initial thalamocortical (TC) driving input to layer 4 in cortex, which was presumed to be weak, needs to
be massively amplified to obtain the observed rates of spiking. However, recent studies have shown
that the weak TC assumption, has underestimated the TC strength by 2-4 times. I hypothesis that,
although the canonical circuit may provide general framework for cortical circuit functioning, diverse
sensory brain areas have major laminar differences in their neuronal and synaptic distributions. These
differences will, in turn, reflect the diverse processing roles and capabilities of the brain areas. To test
this hypothesis I will examine three primary sensory areas in macaque monkey cortex using Focused
Ion Beam/Scanning EM to determine detailed synaptic connectivity, using high-resolution confocal
microscopy to provide large scale determination of specific synaptic connectivity, and using mid-
resolution confocal microscopy to determine global cell type distributions in specific brain regions. If, as
I hypothesize, there are major quantitative differences between areas that will reflect their diverse
processing roles and capabilities, this will call for a refinement of the concept of the canonical circuit.
These quantitative results are important to build realistic population based spiking models of cortex that
can reproduce many of the detailed functional characteristics that are found in the brain. They are also
important because understanding the basic cortical organization of the normal brain is essential, as it
provides the standard against which it can be judged which processes can be seen to be altered or
damaged in disorders that affect the cerebral cortex. Additionally, an important part of this project is my
professional development as a PI. As such, I have established a research enhancement plan to
increase my research scholarship and publications, with the final goal of acquiring non-SCORE
research support.
抽象的
串行共聚焦和电子显微镜(EM)以及自动图像的发展
分割使我们能够阐明皮质回路的某些结构细节
细胞和突触水平。此信息至关重要,因为
电路在不同大脑区域及其功能的形态学特性。广泛接受的是
皮层的规范微电路是跨皮质的重复基序。一旦结构和
理解局部基序中的功能可以在所有皮质上应用。但是,最近
已显示出有主要的层流,区域和物种差异需要将其纳入
该模型的帐户。在感官区域的规范电路的另一个重要特征是
最初的丘脑皮质(TC)在皮质中驱动第4层的输入(假定是弱的)需要
大规模放大以获得观察到的尖峰速率。但是,最近的研究表明
TC弱的假设已低估了TC强度2-4倍。我假设,
尽管规范电路可能为皮质电路的功能提供一般框架,但多样
感觉大脑区域在其神经元和突触分布方面具有主要的层流差异。这些
反过来,差异将反映大脑区域的多种处理作用和能力。测试
这个假设我将使用聚焦研究猕猴皮层中的三个主要感觉区域
使用高分辨率共焦
显微镜可以大规模确定特定的突触连通性,并使用中间
分辨率共聚焦显微镜确定特定大脑区域中的全球细胞类型分布。如果,
我假设,区域之间存在重大的定量差异,这些差异将反映其多样化
处理角色和功能,这将需要对规范电路的概念进行改进。
这些定量结果对于建立基于人口的基于人口的尖峰模型很重要
可以重现大脑中发现的许多详细功能特征。他们也是
重要的是因为了解正常大脑的基本皮质组织至关重要,因为
提供可以判断它的标准,可以看到哪些过程可以更改或
影响大脑皮层的疾病受损。此外,这个项目的重要部分是我
专业发展作为PI。因此,我制定了一个研究增强计划
提高我的研究奖学金和出版物,最终目标是获得非分数
研究支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia Garcia-Marin其他文献
Virginia Garcia-Marin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia Garcia-Marin', 18)}}的其他基金
Understanding the microcircuits in monkey sensory cortices: a connectomic approach
了解猴子感觉皮层的微电路:连接组学方法
- 批准号:
10333990 - 财政年份:2022
- 资助金额:
$ 12.12万 - 项目类别:
相似国自然基金
考虑水平、垂直加速度影响的地震滑坡危险性快速评价方法研究
- 批准号:42307269
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
剪切场下熔体真实流动状态调控及其对结晶影响的研究
- 批准号:51803192
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
射电源结构效应对太阳系质心加速度估计的影响
- 批准号:11603060
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
强震动观测台站建筑物对强地面运动的影响及其处理方法研究
- 批准号:51608098
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
封装效应对微加速度计稳定性影响的基础问题研究
- 批准号:U1530132
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:联合基金项目
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别: