Vascular Regeneration with Human Pluripotent Stem Cell-derived Vascular Cells and Engineering Approaches
人类多能干细胞来源的血管细胞的血管再生和工程方法
基本信息
- 批准号:10548851
- 负责人:
- 金额:$ 49.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AlginatesAmericanAreaBiocompatible MaterialsBiologicalBiomedical EngineeringBlood VesselsBlood capillariesCardiac MyocytesCardiovascular DiseasesCell Culture SystemCell Differentiation processCell LineageCell SurvivalCell TherapyCell TransplantationCell physiologyCellsClinicalClinical TrialsDependenceDiseaseEffectivenessEncapsulatedEndothelial CellsEngineeringFunctional disorderGelGelatinGenerationsGoalsHindlimbHistologicHumanHybridsHydrogelsImpairmentInflammatory ResponseInjectableInjectionsInterventionIschemiaMagnetic Resonance ImagingMeasurementMethacrylatesMicrospheresModelingMolecularMorbidity - disease rateMusMyocardial IschemiaOperative Surgical ProceduresOrganOutcomePatientsPericytesPeripheral arterial diseasePolymersPopulationProtocols documentationResearchResearch PersonnelSmooth Muscle MyocytesSystemTechnologyTherapeuticTherapeutic EffectTissuesVascular DiseasesVascular regenerationVascularizationVirusadult stem cellarterioleblood vessel developmentcell typeclinical applicationcopolymerdesigndisease prognosisexpectationhuman embryonic stem cellhuman pluripotent stem cellimprovedin vivoinduced pluripotent stem cellmicroCTmortalitynanoneovascularizationnext generationnovelparacrinepeptide amphiphilespoly(glycerol-sebacate)preclinical studyregenerative therapystem cellsvirtual
项目摘要
Project Summary
Ischemic cardiovascular diseases are the leading causes of morbidity and mortality in the USA. Despite
advancement in therapeutics, treating patients with severe conditions are still far from optimal. Recently, cell
therapy emerged as a promising option for those advanced cases for which no interventional or surgical
therapy is able to effectively revascularize the ischemic areas.
Human pluripotent stem cells (hPSCs), which include human embryonic stem cells (hESCs) and human
induced pluripotent stem cells (hiPSCs), have emerged as a promising candidate for vascular regeneration as
they have strong target cell differentiation capacity as well as paracrine effects. Thus, investigators have
developed various protocols to differentiate hPSCs into endothelial cell (EC)-lineage cells. We have developed
a fully defined, xenogeneic ingredient-free cell culture system that can generate purified functional endothelial
cells (ECs) at high yield. We further demonstrated that these hPSC-derived ECs (hPSC-ECs) have robust and
prolonged vessel-forming activities in vivo. However, one of the caveats of this approach is that their contribution
is mainly restricted to the capillary level without pericytes. For optimal vascularization, more stable and larger
vessels are also necessary. In previous cell therapy studies, this aspect was virtually unaddressed. Therefore,
we recently generated human PSC-derived SMCs (hPSC-SMCs) by using a defined culture system as well
and observed their contribution to vessel formation as vascular pericytes and SMCs.
Another important barrier for cell therapy is short-term survival of the transplanted cells. To overcome
this problem, we and others have investigated bioengineered cell therapy and demonstrated its effectiveness for
cell survival and function. However, uneven and localized distribution of the injected cells emerged as another
problem. Recently, we have developed a novel biodegradable hybrid copolymer consisting of gelatin and poly
glycerol sebacate (PGS), which was further made into a microbead form with alginate. We refer to this co-
polymer as AlGPM. This hybrid polymer is biodegradable and elicits minimal inflammatory responses. Moreover,
its microbead form promotes wide and homogeneous distribution of encapsulated cells in vivo.
Accordingly, in this study, we will address two unmet needs of the current cell therapy for ischemic
vascular disease. First, we will use both hPSC-ECs and hPSC-SMCs to induce formation of not only bare
capillaries but also pericyte-covered capillaries and SMC-covered arterioles. Second, we will develop a new
biomaterial that can enhance cell survival and distribution in vivo to maximize stable vessel formation and
therapeutic effects. Specifically, we will investigate whether a combination of these two cell types with
AlGPM hydrogel microbeads is able to exert the optimal effects on vascular regeneration. The long-term
goal of this study is to develop clinically applicable regenerative therapy using hPSC-derived vascular cells
combined with bioengineering technologies.
项目摘要
缺血性心血管疾病是美国发病和死亡率的主要原因。尽管
治疗疗法的进步,治疗严重疾病的患者远非最佳。最近,细胞
对于那些没有介入或外科手术的晚期病例,治疗是一种有前途的选择
治疗能够有效地血运重建缺血区域。
人类多能干细胞(HPSC),包括人类胚胎干细胞(HESC)和人类
诱导多能干细胞(HIPSC)已成为血管再生的有前途的候选者
它们具有强大的靶细胞分化能力以及旁分泌作用。因此,调查人员有
开发了各种方案,将HPSC区分为内皮细胞(EC)细胞。我们已经发展了
一个完全定义的,异构成分的无细胞培养系统,可以产生纯化的功能性内皮
细胞(EC)高产量。我们进一步证明了这些HPSC衍生的ECS(HPSC-EC)具有强大的
体内长时间的血管形成活性。但是,这种方法的警告之一是他们的贡献
主要仅限于无周细胞的毛细管水平。为了获得最佳血管化,更稳定和更大
还需要船只。在先前的细胞疗法研究中,这方面几乎没有得到解决。所以,
我们最近通过使用定义的培养系统生成了人类PSC衍生的SMC(HPSC-SMC)
并观察到它们对血管形成的贡献是血管周细胞和SMC。
细胞治疗的另一个重要障碍是移植细胞的短期存活。克服
这个问题,我们和其他人研究了生物工程的细胞疗法,并证明了其有效性
细胞存活和功能。但是,注射细胞的不均匀和局部分布出现为另一种
问题。最近,我们开发了一种新型的可生物降解的杂种共聚物,由明胶和聚合物组成
甲酸酯(PGS),该甘油被进一步制成带有藻酸盐的微粒形式。我们指的是这个共同
聚合物作为ALGPM。该混合聚合物是可生物降解的,并且引起最小的炎症反应。而且,
它的微粒形式促进了体内封装细胞的较宽和均匀分布。
因此,在这项研究中,我们将解决当前细胞疗法的两种未满足的缺血需求
血管疾病。首先,我们将同时使用HPSC-EC和HPSC-SMC诱导形成不仅是裸露的
毛细血管也是周细胞覆盖的毛细血管和SMC覆盖的小动脉。第二,我们将开发一个新的
可以在体内增强细胞存活和分布的生物材料,以最大化稳定的血管形成和
治疗作用。具体来说,我们将研究这两种细胞类型是否与
ALGPM水凝胶微粒能够对血管再生产生最佳影响。长期
这项研究的目标是使用HPSC衍生的血管细胞开发临床适用的再生治疗
结合生物工程技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young-Sup Yoon其他文献
Young-Sup Yoon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young-Sup Yoon', 18)}}的其他基金
Vascular Regeneration with Human Pluripotent Stem Cell-derived Vascular Cells and Engineering Approaches
人类多能干细胞来源的血管细胞的血管再生和工程方法
- 批准号:
10366866 - 财政年份:2022
- 资助金额:
$ 49.15万 - 项目类别:
Vascular Regeneration with Direct Reprogramming and Engineering Strategies
直接重编程和工程策略的血管再生
- 批准号:
10530784 - 财政年份:2022
- 资助金额:
$ 49.15万 - 项目类别:
Vascular Regeneration with Direct Reprogramming and Engineering Strategies
直接重编程和工程策略的血管再生
- 批准号:
10641940 - 财政年份:2022
- 资助金额:
$ 49.15万 - 项目类别:
Cardiac Revascularization with Direct Reprogramming Approaches
通过直接重编程方法进行心脏血运重建
- 批准号:
10337071 - 财政年份:2020
- 资助金额:
$ 49.15万 - 项目类别:
Cardiac Revascularization with Direct Reprogramming Approaches
通过直接重编程方法进行心脏血运重建
- 批准号:
9903989 - 财政年份:2020
- 资助金额:
$ 49.15万 - 项目类别:
Human iPSC-derived endothelial cells as Vascular Therapeutics
人 iPSC 衍生的内皮细胞作为血管治疗药物
- 批准号:
10054574 - 财政年份:2020
- 资助金额:
$ 49.15万 - 项目类别:
Cardiac Revascularization with Direct Reprogramming Approaches
通过直接重编程方法进行心脏血运重建
- 批准号:
10557918 - 财政年份:2020
- 资助金额:
$ 49.15万 - 项目类别:
Human iPSC-derived endothelial cells as Vascular Therapeutics
人 iPSC 衍生的内皮细胞作为血管治疗药物
- 批准号:
10505267 - 财政年份:2020
- 资助金额:
$ 49.15万 - 项目类别:
Cardiac Regeneration with Bioengineered Human Stem Cells
利用生物工程人类干细胞进行心脏再生
- 批准号:
9123170 - 财政年份:2016
- 资助金额:
$ 49.15万 - 项目类别:
相似海外基金
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 49.15万 - 项目类别:
Vascular Regeneration with Human Pluripotent Stem Cell-derived Vascular Cells and Engineering Approaches
人类多能干细胞来源的血管细胞的血管再生和工程方法
- 批准号:
10366866 - 财政年份:2022
- 资助金额:
$ 49.15万 - 项目类别:
ECM biomaterials for diabetic foot ulcers
用于糖尿病足溃疡的 ECM 生物材料
- 批准号:
10432878 - 财政年份:2022
- 资助金额:
$ 49.15万 - 项目类别:
Vascular Regeneration with Direct Reprogramming and Engineering Strategies
直接重编程和工程策略的血管再生
- 批准号:
10530784 - 财政年份:2022
- 资助金额:
$ 49.15万 - 项目类别:
Vascular Regeneration with Direct Reprogramming and Engineering Strategies
直接重编程和工程策略的血管再生
- 批准号:
10641940 - 财政年份:2022
- 资助金额:
$ 49.15万 - 项目类别: