Vascular Regeneration with Direct Reprogramming and Engineering Strategies
直接重编程和工程策略的血管再生
基本信息
- 批准号:10530784
- 负责人:
- 金额:$ 53.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlginatesAmericanAnimal ModelAreaBiocompatible MaterialsBiologicalBiomedical EngineeringBlood VesselsBone MarrowBypassCardiac MyocytesCardiovascular DiseasesCell AdhesionCell Differentiation processCell LineageCell SurvivalCell TherapyCell TransplantationCellsClinicalClinical TrialsDermalDiseaseEmbryoEncapsulatedEndothelial CellsEndotheliumEngineeringFamilyFibroblastsFunctional disorderGelatinGenesGenomicsGoalsHindlimbHistologicHumanHybridsHydrogelsImaging technologyImpairmentInflammatoryInflammatory ResponseInjectionsInsertion MutationIschemiaLentivirus VectorMeasurementMicrospheresModelingMolecularMorbidity - disease rateMusMyocardial IschemiaNeuronsPatientsPeripheral Vascular DiseasesPlayPolymersReportingResearchResidual stateRoleSideSomatic CellTechnologyTherapeuticTherapeutic EffectTimeTissuesTransgenic MiceTransplantationTumorigenicityUndifferentiatedVariantVascular regenerationViralViral Vectoradult stem cellblastomere structureblood vessel developmentcell typeclinical applicationclinical translationcopolymercostdelivery vehicledesignin vivoinduced pluripotent stem cellinflammatory milieuinnovative technologiesmembermortalityneovascularizationnext generationnovelnovel strategiesorgan injuryparticlepoly(glycerol-sebacate)postnatal humanregenerative therapystem cellstherapy developmenttissue regenerationtissue repairtranscription factortumorigenicvector
项目摘要
Project Summary
Ischemic cardiovascular diseases are the leading cause of morbidity and mortality. Underlying
pathophysiology of these diseases is associated with loss or dysfunction of blood vessels and/or impaired new
vessel formation (neovascularization). While cell therapy has emerged as a promising option to form blood
vessels, the effects of adult stem cells are uncertain and embryonic or induced pluripotent stem cells
(ESCs/iPSCs) are potentially tumorigenic. To avoid these problems, a new approach has been developed using
lineage- or cell-type specific transcription factors (TFs) for direct conversion or reprogramming of somatic cells
into other lineage cells. We have attempted this direct reprogramming toward endothelial cells (ECs) using
combinations of seven TFs and found for the first time that ETV2, alone, is sufficient to convert human fibroblasts
into ECs. However, since we used a lentiviral vector, these reprogrammed ECs (rECs) have limited clinical
applicability.
The direct reprogramming approach allows two therapeutic strategies: cell-based therapy or direct in vivo
reprogramming. For clinical application, both approaches require a safer delivery vector to minimize the
possibility of genomic integration. Thus, we developed an adenoviral-ETV2 (Ad-ETV2) vector and generated
rECs (Adeno-rECs). Another important barrier for cell therapy is short-term survival of the transplanted cells. To
overcome this problem, we have been investigating bioengineered cell therapy.
In this study, first, we will generate an optimal construct combining these Adeno-rECs with novel
biomaterials. We have developed a novel biodegradable hybrid copolymer consisting of gelatin and poly glycerol
sebacate (PGS), which was further made into a microbead form with alginate. We refer to this co-polymer as
AlGPM. This hybrid polymer is biodegradable and elicits minimal inflammatory response. Furthermore, its
microbead form promotes wide distribution of encapsulated cells after injection. The composition of AlGPM will
be optimized to promote cell survival and maximize function of rECs. We will then determine the
neovascularization and therapeutic effects of the selected AlGPM microbeads encapsulating rECs using
ischemic animal models. Second, we will determine whether local injection of viral particles of ETV2 into animal
models can directly reprogram somatic cells into endothelial cells and promote vascular regeneration and tissue
repair in vivo. Moreover, by using various transgenic mice, we will genetically track the fate of somatic cells
toward ECs in vivo. Together, the goal of this project is to develop clinically applicable vascular regenerative
therapy using direct reprogramming approaches and bioengineering technologies.
项目摘要
缺血性心血管疾病是发病率和死亡率的主要原因。潜在的
这些疾病的病理生理学与血管的损失或功能障碍有关
血管形成(新血管形成)。虽然细胞疗法已成为形成血液的有前途的选择
血管,成年干细胞的作用不确定,胚胎或诱导的多能干细胞
(ESC/IPSC)可能是肿瘤的。为了避免这些问题,已经开发了一种新方法
谱系或细胞类型特异性转录因子(TFS),用于直接转换或重新编程
进入其他谱系细胞。我们已经尝试使用这种直接重编程对内皮细胞(EC)使用
七个TF的组合,首次发现ETV2足以转换人成纤维细胞
进入ECS。但是,由于我们使用了慢病毒载体,因此这些重编程的EC(REC)的临床有限
适用性。
直接重编程方法允许两种治疗策略:基于细胞的治疗或直接体内
重新编程。对于临床应用,这两种方法都需要更安全的输送矢量来最大程度地减少
基因组整合的可能性。因此,我们开发了腺病毒-ETV2(AD-ETV2)向量并生成
recs(Adeno-Recs)。细胞治疗的另一个重要障碍是移植细胞的短期存活。到
克服这个问题,我们一直在研究生物工程细胞疗法。
在这项研究中,首先,我们将生成一种结合这些腺样体与新颖的最佳结构
生物材料。我们已经开发了一种新型的可生物降解杂交共聚物,由明胶和聚甘油组成
黑甲酸酯(PGS),进一步形成具有藻酸盐的微粒形式。我们将此共聚物称为
algpm。该混合聚合物是可生物降解的,并且引起最小的炎症反应。此外,它的
Microbead形式促进注射后封装的细胞的广泛分布。 ALGPM的组成将
优化以促进细胞存活并最大化REC的功能。然后,我们将确定
选定的ALGPM微粒的新血管形成和治疗效应,使用REC封装Recs
缺血性动物模型。其次,我们将确定是否将ETV2病毒颗粒局部注射到动物中
模型可以将体细胞直接重新编程为内皮细胞,并促进血管再生和组织
在体内维修。此外,通过使用各种转基因小鼠,我们将基因跟踪体细胞的命运
朝着体内的ECS。该项目的目标是开发临床适用的血管再生
使用直接重编程方法和生物工程技术的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young-Sup Yoon其他文献
Young-Sup Yoon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young-Sup Yoon', 18)}}的其他基金
Vascular Regeneration with Human Pluripotent Stem Cell-derived Vascular Cells and Engineering Approaches
人类多能干细胞来源的血管细胞的血管再生和工程方法
- 批准号:
10548851 - 财政年份:2022
- 资助金额:
$ 53.85万 - 项目类别:
Vascular Regeneration with Human Pluripotent Stem Cell-derived Vascular Cells and Engineering Approaches
人类多能干细胞来源的血管细胞的血管再生和工程方法
- 批准号:
10366866 - 财政年份:2022
- 资助金额:
$ 53.85万 - 项目类别:
Vascular Regeneration with Direct Reprogramming and Engineering Strategies
直接重编程和工程策略的血管再生
- 批准号:
10641940 - 财政年份:2022
- 资助金额:
$ 53.85万 - 项目类别:
Cardiac Revascularization with Direct Reprogramming Approaches
通过直接重编程方法进行心脏血运重建
- 批准号:
10337071 - 财政年份:2020
- 资助金额:
$ 53.85万 - 项目类别:
Cardiac Revascularization with Direct Reprogramming Approaches
通过直接重编程方法进行心脏血运重建
- 批准号:
9903989 - 财政年份:2020
- 资助金额:
$ 53.85万 - 项目类别:
Human iPSC-derived endothelial cells as Vascular Therapeutics
人 iPSC 衍生的内皮细胞作为血管治疗药物
- 批准号:
10054574 - 财政年份:2020
- 资助金额:
$ 53.85万 - 项目类别:
Cardiac Revascularization with Direct Reprogramming Approaches
通过直接重编程方法进行心脏血运重建
- 批准号:
10557918 - 财政年份:2020
- 资助金额:
$ 53.85万 - 项目类别:
Human iPSC-derived endothelial cells as Vascular Therapeutics
人 iPSC 衍生的内皮细胞作为血管治疗药物
- 批准号:
10505267 - 财政年份:2020
- 资助金额:
$ 53.85万 - 项目类别:
Cardiac Regeneration with Bioengineered Human Stem Cells
利用生物工程人类干细胞进行心脏再生
- 批准号:
9123170 - 财政年份:2016
- 资助金额:
$ 53.85万 - 项目类别:
相似海外基金
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 53.85万 - 项目类别:
Sprayable Hydrogel Barrier for the Delivery of Adhesion-Preventing Therapeutics
用于提供防粘连治疗的可喷雾水凝胶屏障
- 批准号:
10696561 - 财政年份:2023
- 资助金额:
$ 53.85万 - 项目类别:
Liquid Immunogenic Fiducial Eluter (LIFE) for Cervical Cancer Treatment
用于宫颈癌治疗的液体免疫原性基准洗脱器 (LIFE)
- 批准号:
10385213 - 财政年份:2022
- 资助金额:
$ 53.85万 - 项目类别:
Vascular Regeneration with Direct Reprogramming and Engineering Strategies
直接重编程和工程策略的血管再生
- 批准号:
10641940 - 财政年份:2022
- 资助金额:
$ 53.85万 - 项目类别:
Enabling IL-2 as an Anti-inflammatory Agent through Local Dose-controlled Endoscopic Delivery
通过局部剂量控制内窥镜递送使 IL-2 成为抗炎剂
- 批准号:
10546579 - 财政年份:2022
- 资助金额:
$ 53.85万 - 项目类别: