Secreted Factors for Zebrafish Spinal Cord Regeneration
斑马鱼脊髓再生的分泌因子
基本信息
- 批准号:10542725
- 负责人:
- 金额:$ 24.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-21 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdoptedAffectAreaAxonBehaviorBehavioralBinding SitesBioinformaticsBiomedical EngineeringCell LineCell SurvivalCellsCentral cord canal structureChromatinCicatrixDTR geneDataData AnalysesData SetDistalEGF geneEngineeringEnvironmentEpendymal CellEpidermal Growth FactorEventGenesGenetic Enhancer ElementGenetic TranscriptionGliosisGrowthHeparin BindingHumanImpairmentIn Situ HybridizationInjuryMammalian CellMammalsMolecularMolecular GeneticsMotorMusMutationNatural regenerationNerveNeurogliaNeuronsOutcomeParalysedPopulationProductionProliferatingPromoter RegionsProteinsReagentRecombinantsRecoveryRegenerative MedicineRegenerative capacityRegulationReporterResearchResistanceRoleSensorySequence AnalysisSignal TransductionSiteSpinal CordSpinal Cord transection injurySpinal cord damageSpinal cord injurySupporting CellSwimmingTestingTimeTissuesTransgenesTransgenic OrganismsVisualizationWorkZebrafishaxon growthcandidate identificationdifferential expressionexperimental studyextracellularfactor Ainjuredinsightmutantneuron lossparalogous generegenerativeresponse to injuryspinal cord regenerationspinal cord repairteleostteleost fishtherapy developmenttranscription factortranscriptometranscriptomic profilingwound
项目摘要
Primary and secondary tissue damage from spinal cord injury permanently impairs sensory and motor functions,
causing irreversible paralysis. Developing therapies to treat and reverse spinal cord injury is an urgent need in
regenerative medicine and remains an enormous research challenge. The path to an effective cure requires a
combination of molecular, cellular, electrostimulatory, and engineering approaches, and must be guided by a
deeper understanding of the inherent regenerative capacity of spinal cord tissue. Following spinal cord injury,
nerve cell death and scar formation inhibit regeneration. To date, attempts to alleviate the negative effects of
scarring and to support cell survival and nerve regrowth after injury have not overcome the challenges of
mammalian spinal cord regeneration. By contrast with mammals, teleost zebrafish can form new neurons, regrow
axons, and recover the ability to swim just 6 to 8 weeks after a paralyzing injury that completely severs the spinal
cord. Importantly, these regenerative events proceed without massive scarring. Instead, following injury,
specialized non-neural glia and other cells build a tissue bridge to connect the two severed ends, allowing axons
to grow across the wound and reestablish crucial connections. Encouraging key mammalian cells to adopt this
bridging behavior would shift the mammalian spinal cord injury response from scarring to regeneration,
potentially to an extent sufficient to save tissue function. This highly desirable outcome requires an extensive
understanding of the molecular signals that enable innate spinal cord regeneration. We have bioinformatically
assessed datasets of transcriptome changes after spinal cord injury in zebrafish and mice, with the idea that
factors preferentially induced in a successful context of regeneration would be instructive for such events. Based
on the preliminary data from analysis of several new mutant and transgenic zebrafish strains, we propose to: 1)
elucidate the roles of an induced and secreted factor in the regulation of spinal cord regeneration in zebrafish;
and 2) define the molecular regulation and targets of this factor after spinal cord injury. Our work will provide an
in-depth understanding of a key factor during spinal cord regeneration and reveal insights into its regulatory
mechanisms. These discoveries will guide approaches for comprehending, and potentially manipulating, the
capacity for human spinal cord regeneration.
脊髓损伤造成的原发性和继发性组织损伤会永久损害感觉和运动功能,
造成不可逆转的瘫痪。开发治疗和逆转脊髓损伤的疗法是迫切需要的
再生医学仍然是一个巨大的研究挑战。有效治愈的途径需要
分子、细胞、电刺激和工程方法的结合,并且必须由
更深入地了解脊髓组织固有的再生能力。脊髓损伤后,
神经细胞死亡和疤痕形成抑制再生。迄今为止,人们正在尝试减轻其负面影响
疤痕形成以及支持损伤后细胞存活和神经再生尚未克服以下挑战
哺乳动物脊髓再生。与哺乳动物相比,硬骨鱼斑马鱼可以形成新的神经元,重新生长
轴突,并在完全切断脊柱的瘫痪损伤后 6 至 8 周内恢复游泳能力
绳索。重要的是,这些再生事件的进行不会留下大量疤痕。相反,在受伤之后,
专门的非神经胶质细胞和其他细胞构建组织桥来连接两个切断的末端,从而允许轴突
在伤口上生长并重建重要的连接。鼓励关键哺乳动物细胞采用这种方法
桥接行为会将哺乳动物脊髓损伤反应从疤痕转变为再生,
可能足以挽救组织功能。这个非常理想的结果需要广泛的
了解使先天脊髓再生的分子信号。我们有生物信息学
评估了斑马鱼和小鼠脊髓损伤后转录组变化的数据集,其想法是
在成功的再生背景下优先诱导的因素对于此类事件具有指导意义。基于
根据对几种新突变和转基因斑马鱼品系分析的初步数据,我们建议:1)
阐明诱导和分泌因子在斑马鱼脊髓再生调节中的作用;
2)明确脊髓损伤后该因子的分子调控和靶点。我们的工作将提供
深入了解脊髓再生过程中的关键因素并揭示其调控机制
机制。这些发现将指导理解并可能操纵的方法
人类脊髓再生的能力。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
斑马鱼的脊髓再生需要祖细胞衍生的神经胶质细胞。
- DOI:10.1242/dev.201162
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhou,Lili;McAdow,AnthonyR;Yamada,Hunter;Burris,Brooke;KlattShaw,Dana;Oonk,Kelsey;Poss,KennethD;Mokalled,MayssaH
- 通讯作者:Mokalled,MayssaH
Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer.
- DOI:10.1038/s41467-023-40486-5
- 发表时间:2023-08-11
- 期刊:
- 影响因子:16.6
- 作者:Cigliola, Valentina;Shoffner, Adam;Lee, Nutishia;Ou, Jianhong;Gonzalez, Trevor J. J.;Hoque, Jiaul;Becker, Clayton J. J.;Han, Yanchao;Shen, Grace;Faw, Timothy D. D.;Abd-El-Barr, Muhammad M. M.;Varghese, Shyni;Asokan, Aravind;Poss, Kenneth D. D.
- 通讯作者:Poss, Kenneth D. D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH D POSS其他文献
KENNETH D POSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH D POSS', 18)}}的其他基金
International Society for Regenerative Biology Biennial Conference
国际再生生物学会双年会
- 批准号:
10753785 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Secreted Factors for Zebrafish Spinal Cord Regeneration
斑马鱼脊髓再生的分泌因子
- 批准号:
10338234 - 财政年份:2021
- 资助金额:
$ 24.15万 - 项目类别:
Regulation of Appendage Regeneration in Zebrafish
斑马鱼附肢再生的调控
- 批准号:
10194281 - 财政年份:2021
- 资助金额:
$ 24.15万 - 项目类别:
Regulation of Appendage Regeneration in Zebrafish
斑马鱼附肢再生的调控
- 批准号:
10428599 - 财政年份:2021
- 资助金额:
$ 24.15万 - 项目类别:
Regulation of Appendage Regeneration in Zebrafish
斑马鱼附肢再生的调控
- 批准号:
10619634 - 财政年份:2021
- 资助金额:
$ 24.15万 - 项目类别:
Leveraging zebrafish models to dissect and enhance heart regeneration
利用斑马鱼模型解剖和增强心脏再生
- 批准号:
10612370 - 财政年份:2020
- 资助金额:
$ 24.15万 - 项目类别:
Leveraging zebrafish models to dissect and enhance heart regeneration
利用斑马鱼模型解剖和增强心脏再生
- 批准号:
10163256 - 财政年份:2020
- 资助金额:
$ 24.15万 - 项目类别:
Leveraging zebrafish models to dissect and enhance heart regeneration
利用斑马鱼模型解剖和增强心脏再生
- 批准号:
10400099 - 财政年份:2020
- 资助金额:
$ 24.15万 - 项目类别:
Leveraging zebrafish models to dissect and enhance heart regeneration
利用斑马鱼模型解剖和增强心脏再生
- 批准号:
9890214 - 财政年份:2020
- 资助金额:
$ 24.15万 - 项目类别:
Regulation of the Epicardial Injury Response During Heart Regeneration in Zebrafish
斑马鱼心脏再生过程中心外膜损伤反应的调节
- 批准号:
9040830 - 财政年份:2016
- 资助金额:
$ 24.15万 - 项目类别:
相似国自然基金
htsA蛋白通过影响碳水化合物摄取抵抗宿主免疫杀伤的机制研究
- 批准号:82302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
WASP通过影响IL-6R内吞调控Tfh发育和功能
- 批准号:82302055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脱氧胆酸通过c-Abl-YAP通路调控肠粘膜屏障功能对肝脂肪变形成影响
- 批准号:82370558
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
- 批准号:82373110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肠罗斯拜瑞氏菌通过丙酸失活酪氨酸激酶JAK2影响STAT3磷酸化阻抑UC肠道纤维化的分子机制研究
- 批准号:82370539
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Accelerated Neuromodulation of Prefrontal Circuitry during Clozapine Treatment
氯氮平治疗期间前额叶回路的加速神经调节
- 批准号:
10726660 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Innovations in Implementing Decentralized HIV Services in Peru
秘鲁实施分散式艾滋病毒服务的创新
- 批准号:
10762842 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别: