Machine Learning Inspired Physical Models in Organs

机器学习启发了器官的物理模型

基本信息

  • 批准号:
    10544288
  • 负责人:
  • 金额:
    $ 4.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The vascular system plays a crucial role in diagnostics, treatment, and surgical planning in a wide array of diseases. Historically, practitioners locate vessel manually on each image of a CT scan. This is a tedious process that can vary highly depending on the individual's experience and ability. Recently, there has been motivation to automate this process to save time and increase accuracy. This process, vessel segmentation, is challenging because of the small size of the vessel structure and the varying contrast and noise in medical images. Current image processing techniques have not been successful in resolving the full vascular systems in humans because of these challenges. However, a novel neural network algorithm has shown potential to reduce training times and increase accuracy per degree of freedom in medical imaging segmentation. Applying this algorithm in the liver vessel segmentation, and eventually other organs' vascular system segmentation shows great promise. In addition to achieving successful vessel segmentation of the full vascular system, there is motivation to create a model that simulates blood flow and mass transportation in the vascular system. This is accomplished by using coupled multidimensional computational models for the flow and transport within the blood vessels. The combination of these two aims will give a complete overview of the location and function of a patient's circulatory system. This research will be completed by the joint effort of the Computational and Applied Mathematics Department at Rice University and the Department of Imaging Physics, Division of Diagnostic Imaging at The University of Texas MD Anderson Cancer Center. The collaborative nature of this project allows mathematicians to work with physicians who are experienced in the diagnosis and treatment of many diseases. Leveraging everyone's strengths and background will allow for a successful development and implementation of this project.
项目概要 血管系统在广泛的诊断、治疗和手术计划中发挥着至关重要的作用 从历史上看,医生在 CT 扫描的每张图像上手动定位血管,这是一项繁琐的工作。 最近,出现了这种情况,具体取决于个人的经验和能力。 自动化该过程以节省时间并提高准确性的动机,血管分割, 由于血管结构尺寸小以及医学中不同的对比度和噪声,因此具有挑战性 当前的图像处理技术尚未成功地解析完整的血管系统。 然而,一种新颖的神经网络算法已显示出减少这些挑战的潜力。 训练时间并提高医学成像分割中每个自由度的准确性。 肝脏血管分割中的算法,最终其他器官的血管系统分割显示 除了成功实现整个血管系统的血管分割之外,还有巨大的前景。 创建模拟血管系统中的血流和物质运输的模型的动机。 通过使用血液内流动和运输的耦合多维计算模型来完成 这两个目标的结合将提供对位置和功能的完整概述。 这项研究将由计算部门的共同努力完成。 莱斯大学应用数学系和成像物理系 德克萨斯大学 MD 安德森癌症中心的诊断成像 协作性质。 该项目允许数学家与在诊断和治疗方面经验丰富的医生合作 利用每个人的优势和背景将能够成功地发展和治疗许多疾病。 该项目的实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bilyana Tzolova其他文献

Bilyana Tzolova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bilyana Tzolova', 18)}}的其他基金

Machine Learning Inspired Physical Models in Organs
机器学习启发了器官的物理模型
  • 批准号:
    10315919
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Machine Learning Inspired Physical Models in Organs
机器学习启发了器官的物理模型
  • 批准号:
    10686402
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:

相似国自然基金

CCL21低表达抑制CCR7+Mφ分化参与子宫腺肌病内膜胶原沉积的机制研究
  • 批准号:
    82371678
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
CXCL2/TNF-α介导平滑肌细胞和在位内膜间质细胞的交互作用促进子宫腺肌病发病的机制研究
  • 批准号:
    82301858
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
桂楼组分通过RHO GTPases抑制子宫腺肌病内膜细胞EMT的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丹莪妇康煎膏经PI3K/AKT/mTOR通路调控SP细胞增殖及凋亡治疗子宫腺肌病的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
阴道用仿生纳米凝胶体系级联介导米非司酮治疗子宫腺肌病及机制研究
  • 批准号:
    82071616
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Research aimed at overcoming perinatal complications caused by endometriosis and adenomyosis.
研究旨在克服子宫内膜异位症和子宫腺肌症引起的围产期并发症。
  • 批准号:
    24K19715
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CHEMICAL SCREENING AND OPTIMIZATION FACILITY - MANAGEMENT, ADMINISTRATION AND DATABASE CORE FUNCTION ACTIVITIES
化学筛选和优化设施 - 管理、行政和数据库核心功能活动
  • 批准号:
    10942871
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
PGRMC Proteins as Markers of Fertility and Overall Health Status
PGRMC 蛋白作为生育力和整体健康状况的标志
  • 批准号:
    10729068
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
Molecular detection of intrauterine microbial colonization in women with adenomyosis and occurrence of chronic endometritis
子宫腺肌病女性宫内微生物定植及慢性子宫内膜炎发生的分子检测
  • 批准号:
    23K08893
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CHEMICAL SCREENING AND OPTIMIZATION FACILITY - PROTEIN EXPRESSION AND/OR X-RAY CRYSTALLOGRAPHY
化学筛选和优化设施 - 蛋白质表达和/或 X 射线晶体学
  • 批准号:
    10942884
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了