Using Machine Learning and Patient-Reported Outcomes to Identify Unnecessary Hospitalizations
使用机器学习和患者报告的结果来识别不必要的住院治疗
基本信息
- 批准号:10509614
- 负责人:
- 金额:$ 11.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAdmission activityAffectAmbulatory CareAwardCOVID-19COVID-19 pandemicCardiopulmonaryCaringCause of DeathCharacteristicsChronic Obstructive Pulmonary DiseaseClinicalCodeDangerousnessDataDefensive MedicineDisadvantagedDiseaseElectronic Health RecordEmergency department visitEnsureExposure toFacultyFoundationsFrightFutureGoalsHealthHealth ExpendituresHealth Services ResearchHealthcareHeart failureHospitalizationHospitalsHumanInpatientsInternal MedicineJudgmentK-Series Research Career ProgramsKnowledgeLearningMachine LearningMeasuresMediatingMedicalMedical ErrorsMedical WasteMedicineMethodsModelingMoralsMorbidity - disease rateMyocardial InfarctionNational Heart, Lung, and Blood InstituteNatural experimentOutcomeOutcome MeasureOutpatientsPatient CarePatient Outcomes AssessmentsPatientsPerformancePhysiciansPneumoniaPrincipal InvestigatorProviderPublishingRandomizedRecoveryReportingResearchResearch PersonnelResearch TrainingRiskRunningSARS coronavirusScientistSensitivity and SpecificityShortness of BreathSourceStrokeSymptomsTestingTimeTrainingUncertaintyVulnerable PopulationsWorkadjudicatearmcareercareer developmentcostethnic minorityexperiencehazardhealth care disparityhealth equityimprovedinnovationinpatient servicelearning outcomemachine learning modelmachine learning predictionmarginalized populationmortalityovertreatmentpandemic diseaseperformance testspilot trialpoint of carepredictive modelingprogramsprospectiveracial and ethnicracial minorityresponseskillssuccesstoolunethical
项目摘要
PROJECT SUMMARY/ABSTRACT
I (Richard K. Leuchter, MD) am a UCLA Internal Medicine resident who will be joining the faculty as a clinician-
scientist at UCLA in July 2022. I will practice hospital medicine and pursue health services research focused
on identifying and reducing medical waste - patient care that provides no net benefit in certain clinical
scenarios, and can also cause harm. I will build upon the excellent health services research training I received
through the R38 StARR program, and continue my research using machine learning (ML) to identify and
minimize medical waste. Unnecessary hospitalizations represent one of the single largest reservoirs of medical
waste and disproportionately burden racial and ethnic minorities, but efforts to address this problem have been
hindered by a lack of measures that can prospectively identify hospitalizations as unnecessary with acceptable
accuracy. A critical barrier to measuring and reducing unnecessary hospitalizations is that claims data (e.g.,
billing information submitted to payers) lack enough clinical detail to accurately classify a hospitalization as
“unnecessary.” Supplementing claims data with richer electronic health record (EHR) data offers potential to
improve predictive accuracy, but EHR data do not routinely include discrete patient-reported outcomes (PROs)
to quantify recovery from subjective symptoms (e.g., shortness of breath), making it difficult to adjudicate the
necessity of admissions for diseases such as heart failure or pneumonia. To advance my career goals and
work toward my overall aim of reducing the harms arising from wasteful medical practices (especially among
disadvantaged patients), I propose a new method to identify unnecessary hospitalizations: train predictive ML
models from EHR data that can identify admissions with a high likelihood of being unnecessary, and then
assess model performance using a combination of clinical PROs and EHR outcomes. My overarching goal is
to reduce wasteful and inequitable healthcare practices by becoming a leading principal investigator
developing innovative and state of the art methods to minimize medical waste.
To achieve this goal, I seek support from the NHLBI K38 Career Development Award. I will acquire skills in
coding and using ML to predict health outcomes, measuring and analyzing PROs, and health/healthcare
disparities research. I propose two specific research aims that align with my career development goals: 1)
develop ML models that can identify Emergency Department (ED) admissions for cardiopulmonary illnesses
with a high likelihood of being unnecessary, and 2) measure the prospective performance of these models
using a combination of PROs and EHR data that will be collected from patients presenting to the ED. I will
apply knowledge learned from my training to accomplish these aims, and plan to use the products of this
research to inform an NHLBI K23 proposal for a single center pragmatic pilot trial that I plan to submit in 2023.
The K38 Award would provide me with the training and skills needed to become a national leader in using
emerging methods to reduce medical waste and its associated healthcare disparities.
项目概要/摘要
我(Richard K. Leuchter,医学博士)是加州大学洛杉矶分校内科住院医师,将以临床医生的身份加入该学院-
2022 年 7 月成为加州大学洛杉矶分校的科学家。我将从事医院医学工作并从事以健康服务为重点的研究
识别和减少医疗废物 - 在某些临床中不提供净效益的患者护理
我将在我接受的优秀卫生服务研究培训的基础上进行研究。
通过 R38 StARR 计划,并使用机器学习 (ML) 继续我的研究来识别和
最大限度地减少不必要的住院治疗是最大的医疗资源之一。
浪费并给少数种族和族裔带来不成比例的负担,但解决这一问题的努力一直在
由于缺乏可以前瞻性地确定住院治疗为不必要且可接受的措施而受到阻碍
衡量和减少不必要住院的一个关键障碍是索赔数据(例如,
提交给付款人的账单信息)缺乏足够的临床细节来准确地将住院分类为
“没有必要。”用更丰富的电子健康记录(EHR)数据补充索赔数据可以提供以下潜力:
提高预测准确性,但 EHR 数据通常不包括离散的患者报告结果 (PRO)
量化主观症状(例如呼吸短促)的恢复情况,这使得很难判断
因心力衰竭或肺炎等疾病入院的必要性,以推进我的职业目标和
努力实现我的总体目标,即减少浪费的医疗实践(尤其是在
弱势患者),我提出了一种新方法来识别不必要的住院治疗:训练预测机器学习
来自 EHR 数据的模型可以识别很有可能是不必要的入院,然后
我的首要目标是结合临床 PRO 和 EHR 结果来评估模型性能。
成为领先的首席研究员,减少浪费和不公平的医疗保健实践
开发创新和最先进的方法来最大限度地减少医疗废物。
为了实现这一目标,我寻求 NHLBI K38 职业发展奖的支持,我将获得以下方面的技能。
编码并使用 ML 来预测健康结果、测量和分析 PRO 以及健康/医疗保健
我提出了两个与我的职业发展目标相一致的具体研究目标:1)
开发可以识别急诊室 (ED) 因心肺疾病入院的 ML 模型
很可能是不必要的,并且 2)衡量这些模型的预期性能
我将结合从向 ED 就诊的患者收集 PRO 和 EHR 数据。
应用从我的培训中学到的知识来实现这些目标,并计划使用此产品
我计划在 2023 年提交一项 NHLBI K23 单中心实用试点试验提案。
K38 奖将为我提供成为国家领导者所需的培训和技能
减少医疗废物及其相关医疗保健差异的新兴方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard K Leuchter其他文献
Richard K Leuchter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard K Leuchter', 18)}}的其他基金
Using Machine Learning and Patient-Reported Outcomes to Identify Unnecessary Hospitalizations
使用机器学习和患者报告的结果来识别不必要的住院治疗
- 批准号:
10696203 - 财政年份:2022
- 资助金额:
$ 11.19万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 11.19万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 11.19万 - 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
- 批准号:
10584217 - 财政年份:2023
- 资助金额:
$ 11.19万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 11.19万 - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 11.19万 - 项目类别: