Using Machine Learning and Patient-Reported Outcomes to Identify Unnecessary Hospitalizations

使用机器学习和患者报告的结果来识别不必要的住院治疗

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT I (Richard K. Leuchter, MD) am a UCLA Internal Medicine resident who will be joining the faculty as a clinician- scientist at UCLA in July 2022. I will practice hospital medicine and pursue health services research focused on identifying and reducing medical waste - patient care that provides no net benefit in certain clinical scenarios, and can also cause harm. I will build upon the excellent health services research training I received through the R38 StARR program, and continue my research using machine learning (ML) to identify and minimize medical waste. Unnecessary hospitalizations represent one of the single largest reservoirs of medical waste and disproportionately burden racial and ethnic minorities, but efforts to address this problem have been hindered by a lack of measures that can prospectively identify hospitalizations as unnecessary with acceptable accuracy. A critical barrier to measuring and reducing unnecessary hospitalizations is that claims data (e.g., billing information submitted to payers) lack enough clinical detail to accurately classify a hospitalization as “unnecessary.” Supplementing claims data with richer electronic health record (EHR) data offers potential to improve predictive accuracy, but EHR data do not routinely include discrete patient-reported outcomes (PROs) to quantify recovery from subjective symptoms (e.g., shortness of breath), making it difficult to adjudicate the necessity of admissions for diseases such as heart failure or pneumonia. To advance my career goals and work toward my overall aim of reducing the harms arising from wasteful medical practices (especially among disadvantaged patients), I propose a new method to identify unnecessary hospitalizations: train predictive ML models from EHR data that can identify admissions with a high likelihood of being unnecessary, and then assess model performance using a combination of clinical PROs and EHR outcomes. My overarching goal is to reduce wasteful and inequitable healthcare practices by becoming a leading principal investigator developing innovative and state of the art methods to minimize medical waste. To achieve this goal, I seek support from the NHLBI K38 Career Development Award. I will acquire skills in coding and using ML to predict health outcomes, measuring and analyzing PROs, and health/healthcare disparities research. I propose two specific research aims that align with my career development goals: 1) develop ML models that can identify Emergency Department (ED) admissions for cardiopulmonary illnesses with a high likelihood of being unnecessary, and 2) measure the prospective performance of these models using a combination of PROs and EHR data that will be collected from patients presenting to the ED. I will apply knowledge learned from my training to accomplish these aims, and plan to use the products of this research to inform an NHLBI K23 proposal for a single center pragmatic pilot trial that I plan to submit in 2023. The K38 Award would provide me with the training and skills needed to become a national leader in using emerging methods to reduce medical waste and its associated healthcare disparities.
项目摘要/摘要 我(理查德·K·勒克特(Richard K. Leuchter) 2022年7月在加州大学洛杉矶分校的科学家。我将练习以医学医学和购买健康服务研究为重点 关于识别和减少医疗废物 - 患者护理在某些临床方面没有净收益 场景,也可能造成伤害。我将基于我收到的出色的医疗服务研究培训 通过R38 Starr计划,并继续使用机器学习(ML)来识别和 最小化医疗废物。不必要的住院是最大的医疗储量之一 浪费和不成比例的伯恩伯恩种族和少数民族,但是解决这个问题的努力是 由于缺乏可以前瞻性地确定住院的措施而受到阻碍 准确性。衡量和减少不必要住院的关键障碍是索赔数据(例如, 提交给付款人的计费信息)缺乏足够的临床细节来准确将住院分类为 “不必要。”用更丰富的电子健康记录(EHR)数据补充索赔数据的数据提供了潜力 提高预测精度,但EHR数据通常不包括离散的患者报告结果(PRO) 量化从主观症状中恢复(例如,呼吸急促),使其难以调整 需要接受诸如心力衰竭或肺炎等疾病的入院。促进我的职业目标和 为了减少浪费医疗习惯引起的危害的总体目标(尤其是在 处境不利的患者),我提出了一种确定不必要住院的新方法:火车预测ML 来自EHR数据的模型可以识别出很可能不必要的入院,然后 使用临床优点和EHR结果的组合评估模型性能。我的总体目标是 通过成为主要的首席研究员,减少浪费和不平等的医疗保健实践 开发创新的艺术方法,以最大程度地减少医疗废物。 为了实现这一目标,我寻求NHLBI K38职业发展奖的支持。我将获得技能 编码和使用ML来预测健康结果,衡量和分析专业人士以及健康/医疗保健 差异研究。我提出了两个具体的研究目的,这些研究与我的职​​业发展目标保持一致:1) 开发可以识别心肺疾病的急诊科(ED)入院的ML模型 不必要的很有可能是不必要的,2)衡量这些模型的预期性能 利用将从出现到ED的患者收集的PROS和EHR数据的组合。我会 应用从我的培训中学到的知识来实现​​这些目标,并计划使用此产品 我计划在2023年提交的单个中心实用试验试验的NHLBI K23提案。 K38奖将为我提供成为国家领导者所需的培训和技能 减少医疗废物及其相关医疗保健分配的新兴方法。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When peer comparison information harms physician well-being.
共 1 条
  • 1
前往

Richard K Leuchter的其他基金

Using Machine Learning and Patient-Reported Outcomes to Identify Unnecessary Hospitalizations
使用机器学习和患者报告的结果来识别不必要的住院治疗
  • 批准号:
    10509614
    10509614
  • 财政年份:
    2022
  • 资助金额:
    $ 11.19万
    $ 11.19万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
  • 批准号:
    10710712
    10710712
  • 财政年份:
    2023
  • 资助金额:
    $ 11.19万
    $ 11.19万
  • 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
  • 批准号:
    10749448
    10749448
  • 财政年份:
    2023
  • 资助金额:
    $ 11.19万
    $ 11.19万
  • 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
  • 批准号:
    10584217
    10584217
  • 财政年份:
    2023
  • 资助金额:
    $ 11.19万
    $ 11.19万
  • 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
  • 批准号:
    10585508
    10585508
  • 财政年份:
    2023
  • 资助金额:
    $ 11.19万
    $ 11.19万
  • 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
  • 批准号:
    10741596
    10741596
  • 财政年份:
    2023
  • 资助金额:
    $ 11.19万
    $ 11.19万
  • 项目类别: