Machine Perception Nanosensor Array Platform to Capture Whole Disease Fingerprints of Early Stage Pancreatic Cancer
机器感知纳米传感器阵列平台可捕获早期胰腺癌的整个疾病指纹
基本信息
- 批准号:10507496
- 负责人:
- 金额:$ 9.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsAwardBindingBiological MarkersCA-19-9 AntigenCancer DetectionCancer EtiologyCarbon NanotubesCessation of lifeClassificationClinicalCollectionColorDNADNA LibraryDataData SetDependenceDetectionDiagnosisDiagnosticDiseaseDisease ProgressionDistantDropsEarly DiagnosisEarly identificationEventFingerprintImmunoassayIndividualLibrariesMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMentorsModelingMolecularNeoplasm MetastasisOutcomeOutcome StudyPancreasPancreatic Ductal AdenocarcinomaParentsPatientsPerceptionPrincipal Component AnalysisProcessPropertyProteinsProteomicsRecurrenceSamplingSensitivity and SpecificitySerumSerum MarkersSiteSourceSpecificitySurvival RateTechnologyTestingTrainingUnited StatesVariantWorkartificial neural networkbiomarker discoveryexperimental studyhigh riskimprovedimproved outcomeinnovationlarge datasetsmachine learning algorithmmachine learning modelmodel developmentmolecular markermortalitynanosensorspancreatic cancer modelpotential biomarkerprocess optimizationprognostic indicatorprospectiveprotein biomarkersrandom forestresponsescreeningsensorsensor technologysupport vector machinetemporal measurementvalidation studies
项目摘要
PROJECT SUMMARY AND ABSTRACT
This project endeavors to build a nanosensor array platform technology to detect whole disease fingerprints from
patient biofluids to facilitate diagnosis and biomarker discovery efforts in pancreatic cancer. Pancreatic cancer
is currently the fourth leading cause of cancer-related mortality in the US. The ability to diagnose pancreatic
cancer at early stages would allow many patients to be actively treated, thereby greatly improving their outcomes.
Serum biomarker measurements have been widely used as diagnostic/prognostic indicators, but many markers
are not sufficient for specific assessments of disease states. Major factors limiting precise diagnosis us-
ing these biomarkers include their low sensitivity at high specificity for diseases and the overall dearth of estab-
lished molecular markers. Therefore, innovative approaches to improve disease-state specificity/sensitivity and
biomarker discovery efforts are needed to achieve accurate identification of many conditions. I believe that the
differentiation of disease from normal biofluids may be achieved by the detection of a “disease fingerprint” by
collecting large data sets of molecular binding interactions to a diverse set of moderately selective sensors.
I will build a sensor array comprising organic color centers (covalently-modified carbon nanotubes) stabilized
with DNA to transduce subtle differences in physicochemical properties of molecules in biofluids. With sufficient
diversity, the sensors can differentiate biofluids by disease status with the aid of machine learning pro-
cesses. This platform will also be used to facilitate biomarker discovery efforts. In preliminary data, I discovered
that the responses collected from hundreds of patient samples and interpreted by machine learning algorithms
can beat established serum biomarker measurements. I plan to leverage this technology to develop a robust
diagnostic sensor platform to acquire disease fingerprints of pancreatic cancer in patients biofluids to significantly
increase sensitivity and specificity over single biomarkers and to accelerate biomarker discovery processes. I
propose to investigate: 1) the potential of this technology for the early detection of pancreatic cancer, 2) the
molecular mechanism of the response, and 3) the potential for this platform to enable the discovery of new
biomarkers. In the 2-year mentored (K99) period of the award, I aim to develop a machine perception nanosen-
sor technology with the focusing problem of pancreatic cancer detection and establish the selection rules in the
sensor array construction and the workflow of machine learning-based model development. For the 3-year in-
dependence (R00) period, I aim to systematically investigate how to render the machine learning models trans-
parent to understand the mechanism of high prediction accuracy and discover effective biomarker combinations
for clinical validation studies. Successful completion of the proposed work will result in a validated platform to
enable concomitant identification of early disease states and acceleration of protein biomarker discovery pro-
cesses in pancreatic cancer.
项目概要和摘要
该项目致力于构建纳米传感器阵列平台技术来检测整个疾病的指纹
患者生物体液促进胰腺癌的诊断和生物标志物发现工作。
目前是美国癌症相关死亡的第四大原因。
早期癌症将使许多患者得到积极治疗,从而大大改善他们的治疗结果。
血清生物标志物测量已广泛用作诊断/预后指标,但许多标志物
不足以对疾病状态进行具体评估。限制精确诊断的主要因素。
这些生物标志物包括它们对疾病的低敏感性和高特异性以及建立的总体深度。
因此,提出了提高疾病状态特异性/敏感性的创新方法。
我相信,需要通过生物标志物的发现努力来实现对许多情况的准确识别。
通过检测“疾病指纹”可以将疾病与正常生物体液区分开来
收集分子结合相互作用的大数据集到一组不同的中等选择性传感器。
我将构建一个包含稳定有机色心(共价改性碳纳米管)的传感器阵列
与 DNA 一起转导生物流体中分子物理化学性质的细微差异。
多样性,传感器可以在机器学习亲的帮助下根据疾病状态区分生物体液
在初步数据中,我发现该平台还将用于促进生物标志物的发现工作。
从数百个患者样本中收集并由机器学习算法解释的反应
可以击败已建立的血清生物标志物,我计划利用这项技术开发一种强大的技术。
诊断传感器平台获取患者体液中胰腺癌的疾病指纹,以显着
提高单一生物标志物的敏感性和特异性,并加速生物标志物的发现过程。
提议研究:1)该技术在早期检测胰腺癌方面的潜力,2)
反应的分子机制,以及 3)该平台有可能发现新的
在该奖项的 2 年指导(K99)期间,我的目标是开发一种机器感知纳米传感器。
结合胰腺癌检测的聚焦问题,建立筛选规则
传感器阵列构建和基于机器学习的模型开发工作流程 3 年。
依赖(R00)期间,我的目标是系统地研究如何使机器学习模型跨
家长了解高预测准确度的机制并发现有效的生物标志物组合
临床验证研究的成功完成将产生一个经过验证的平台
能够同时识别早期疾病状态并加速蛋白质生物标志物的发现
胰腺癌的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mijin Kim其他文献
Mijin Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mijin Kim', 18)}}的其他基金
Machine Perception Nanosensor Array Platform to Capture Whole Disease Fingerprints of Early Stage Pancreatic Cancer
机器感知纳米传感器阵列平台可捕获早期胰腺癌的整个疾病指纹
- 批准号:
10684240 - 财政年份:2022
- 资助金额:
$ 9.94万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 9.94万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 9.94万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 9.94万 - 项目类别:
Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
- 批准号:
10739603 - 财政年份:2023
- 资助金额:
$ 9.94万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 9.94万 - 项目类别: